LM-METER: Unveiling Runtime Inference Latency for
On-Device Language Models

Haoxin Wang
haoxinwang@gsu.edu
Georgia State University
Atlanta, GA, USA

Xiaolong Tu
xtul@student.gsu.edu
Georgia State University
Atlanta, GA, USA

Hongyu Ke
hke3@student.gsu.edu
Georgia State University
Atlanta, GA, USA

Huirong Chai Dawei Chen Kyungtae Han
hchai4@student.gsu.edu dawei.chenl@toyota.com kt.han@toyota.com
Georgia State University Toyota InfoTech Labs Toyota InfoTech Labs

Atlanta, GA, USA

Abstract

Large Language Models (LLMs) are increasingly integrated
into everyday applications, but their prevalent cloud-based
deployment raises growing concerns around data privacy
and long-term sustainability. Running LLMs locally on mo-
bile and edge devices (on-device LLMs) offers the promise of
enhanced privacy, reliability, and reduced communication
costs. However, realizing this vision remains challenging
due to substantial memory and compute demands, as well
as limited visibility into performance-efficiency trade-offs
on resource-constrained hardware. We propose LM-METER,
the first lightweight, online latency profiler tailored for on-
device LLM inference. LM-METER captures fine-grained, real-
time latency at both phase (e.g., embedding, prefill, decode,
softmax, sampling) and kernel levels without auxiliary de-
vices. We implement LM-METER on commercial mobile plat-
forms and demonstrate its high profiling accuracy with min-
imal system overhead, e.g., only 2.58% throughput reduc-
tion in prefill and 0.99% in decode under the most con-
strained Powersave governor. Leveraging LM-METER, we
conduct comprehensive empirical studies revealing phase-
and kernel-level bottlenecks in on-device LLM inference,
quantifying accuracy-efficiency trade-offs, and identifying
systematic optimization opportunities. LM-METER provides
unprecedented visibility into the runtime behavior of LLMs
on constrained platforms, laying the foundation for informed
optimization and accelerating the democratization of on-
device LLM systems. Code and tutorials are available at
github.com/amai-gsu/LM-Meter.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

SEC ’25, Arlington, VA, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2238-7/2025/12
https://doi.org/10.1145/3769102.3770614

Mountain View, CA, USA

Mountain View, CA, USA
CCS Concepts

« Computing methodologies — Machine learning; «
Human-centered computing — Ubiquitous and mobile
computing.

Keywords
Large Language Models, On-Device Al, Edge Computing

ACM Reference Format:

Haoxin Wang, Xiaolong Tu, Hongyu Ke, Huirong Chai, Dawei
Chen, and Kyungtae Han. 2025. LM-METER: Unveiling Runtime
Inference Latency for On-Device Language Models. In The Tenth
ACMY/IEEE Symposium on Edge Computing (SEC ’25), December 3—
6, 2025, Arlington, VA, USA. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3769102.3770614

1 Introduction

Large language models (LLMs), such as GPT-series [1, 2],
LLaMA [3], and DeepSeek [4, 5], have recently garnered sig-
nificant attention for their impressive capabilities in natural
language understanding, generation, and reasoning across
a broad spectrum of tasks. By scaling to billions or even
trillions of parameters, these models have achieved state-of-
the-art performance in applications including machine trans-
lation, dialogue systems, and code generation [6-9]. Today,
the predominant approach to deploying LLMs is cloud-based,
relying on centralized inference services hosted in large-scale
data centers. These services are typically powered by spe-
cialized hardware accelerators, custom software stacks, and
a suite of system-level optimizations, such as tensor paral-
lelism [10], speculative decoding [11], and memory-efficient
KV cache management [12], to support emerging use cases
with high-throughput, low-latency inference at scale.
Despite the benefits of deploying LLMs in cloud environ-
ments, this paradigm has pushed the computational bound-
aries of cloud infrastructure and exacerbates concerns over

https://github.com/amai-gsu/LM-Meter
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3769102.3770614
https://doi.org/10.1145/3769102.3770614

SEC 25, December 3-6, 2025, Arlington, VA, USA

its long-term sustainability (§2.1). Moreover, issues surround-
ing data privacy and user data custody have become increas-
ingly prominent. For instance, many private enterprises and
government agencies restrict the use of cloud-hosted LLM
services for processing sensitive or proprietary information
due to potential risks involving data leakage, regulatory non-
compliance, and lack of control over data residency. These
concerns underscore a growing demand for local LLM ac-
cessibility on mobile and edge devices (i.e., on-device LLMs),
such as smartphones and Internet-of-Things (IoT) devices,
to enable broader and more privacy-preserving integration
of LLMs into users’ everyday lives. On-device LLMs offer
several compelling benefits, including enhanced data pri-
vacy, greater reliability under intermittent connectivity, and
reduced communication costs. They also enable user-centric
personalization and context-aware adaptation, unlocking
new opportunities for responsive, interactive applications
directly on personal consumer devices [13].

However, deploying LLMs effectively and efficiently on
mobile and edge hardware remains largely under-explored.
First, the parameter sizes of most state-of-the-art LLMs scale
into the billions, demanding substantial memory capacity to
accommodate model weights, intermediate activations, and
inference computations, often exceeding the limited com-
pute and memory resources available on mobile and edge
devices. Second, most existing model architectures and soft-
ware frameworks are designed and optimized for cloud or
high-performance computing environments. Third, there is a
limited understanding of the fundamental trade-offs between
performance and efficiency in on-device LLM inference. Crit-
ical bottlenecks, such as task-dependent throughput limita-
tions and latency in specific inference phases and kernels, re-
main insufficiently characterized. Existing literature provides
minimal insight into opportunities for systematic optimiza-
tion, adaptive runtime strategies, kernel-level improvements,
or efficient scheduling under tight resource budgets. More
importantly, the lack of lightweight, real-time profiling tools
further exacerbates these challenges, restricting the ability
to comprehensively analyze and optimize on-device LLM
inference across algorithmic, kernel, and hardware levels.

To this end, we propose LM-METER, the first lightweight
online runtime latency profiler for on-device LLM inference.
LM-METER enables accurate, real-time latency measurement
at both phase (e.g., embedding, prefill, decode, softmax, and
sampling) and kernel granularity on consumer-grade mobile
and edge platforms, without auxiliary devices. We envision
LM-METER as a foundation for studying runtime bottlenecks
and deployment constraints, addressing a key barrier to the
practical democratization of on-device LLMs. Our main con-
tributions are summarized below:

Haoxin Wang et al.

o We design and implement LM-METER, a lightweight online
runtime latency profiler tailored for on-device LLM infer-
ence. Through evaluations on multiple consumer-grade
mobile devices, we demonstrate that LM-METER accurately
captures both phase-level and kernel-level latencies with
minimal system overhead, validating its practicality for
real-world deployment.

e Leveraging LM-METER, we conduct a phase-oriented em-
pirical study to systematically analyze the Pareto frontier
of performance-efficiency trade-offs across diverse bench-
marking tasks, popular open-source LLM suites, varying
model sizes, and mobile platforms. We further conduct a
systematic evaluation to characterize how quantization
shifts these trade-offs by proposing a new metric, the Har-
monic Quantization score (HQ).

e We perform a kernel-oriented empirical study to uncover
fine-grained execution bottlenecks and resource utilization
patterns at the kernel level.

e Based on our empirical analyses, we identify critical bot-
tlenecks in on-device LLM inference and distill actionable
insights for both system- and model-level optimizations,
informing the design of more efficient, scalable, and re-
sponsive on-device LLM systems.

2 Background and Motivation
2.1 Why Democratizing On-Device LLMs

Sustainability. Prominent implementations of contempo-
rary LLM products, such as ChatGPT [14] and Google Note-
bookLM [15], primarily rely on cloud-based infrastructures
due to their massive model sizes (ranging from billions to tril-
lions of parameters) and substantial computational demands.
As human reliance on LLMs continues to grow, envisioning
a future where it becomes deeply integrated into daily life,
supporting both front-end interactions, such as personalized
companionship [16-19], and back-end applications like rec-
ommendation systems, its usage could constitute ~ 5% of an
individual’s daily time [20]. In such a scenario, operating a
single LLM model (e.g., GPT-4) at a processing rate of 50 to-
kens per second to serve the global population would require
the deployment of roughly 100 million H100 GPUs (each ca-
pable of 60 trillion floating-point operations per second) [21].
This immense computational scale required, excluding net-
work overhead, would be equivalent to the infrastructure of
approximately 160 Meta-scale companies [22].

User privacy. Centralized LLM services require user data,
often highly sensitive, to traverse public networks and be
processed in remote data centers, creating significant attack
surfaces. Privacy risks are most acute in domains that handle
regulated or confidential information, including healthcare
(e.g., patient health data), finance, and enterprise productivity

LM-METER: Unveiling Runtime Inference Latency for On-Device Language Models

workflows containing proprietary IP. On-device LLMs elimi-
nate this exposure by keeping both the model and the data
local, dramatically reducing the attack surface and aligning
with regulations such as HIPAA [23]. This privacy-by-design
paradigm makes local deployment not merely a technical
optimization but a prerequisite for user trust. Removing the
dependency on continuous connectivity also improves relia-
bility in bandwidth-constrained or offline scenarios.

In summary, transitioning LLM computations to mobile
and edge devices, including smartphones, personal comput-
ers, and IoT devices, is essential for achieving improved sus-
tainability, enhanced privacy, and robust network indepen-
dence by bringing computation closer to end users.

2.2 Why a Lightweight Online Profiler
Matters

Despite its promising potential, on-device LLM deployment
remains largely under-explored and poses formidable re-
search challenges. Bridging the gap between their immense
computational demands and the resource constraints of mo-
bile and edge devices requires fundamental breakthroughs.
These constraints include restricted memory and compute
capacity, limited energy reserves (e.g., battery life or inter-
mittent power), and insufficient support for parallelism [24].
We conduct a pilot benchmark to validate the above
concerns using one of the most popular open-source LLM
suites, Qwen [25]. Three generations, Qwen-1.5, Qwen-2,
and Qwen-2.5, are evaluated in their smallest 0.5B param-
eter configurations to ensure they can run unmodified (no
quantization or fine-tuning) on contemporary mobile hard-
ware. Table 1 presents accuracy on three benchmark tasks
(ARC-Challenge, HellaSwag, GSM8K) and token-generation
throughput measured on a Google Pixel 8 Pro. Interestingly,
the results reveal a widening accuracy-efficiency gap. While
each successive generation improves accuracy (e.g., +4.4 per-
centage point (pp) on HellaSwag and +24.5 pp on GSM8K
from Qwen-1.5 to Qwen-2.5), on-device decode throughput
drops by 24%, from 22.76 tokens/s to 17.29 tokens/s. This
trend underscores a prevailing research emphasis on accu-
racy gains, often at the expense of runtime efficiency, and
directly conflicts with the constraints of on-device LLMs.
Consequently, a comprehensive and systematic under-
standing of on-device LLM bottlenecks is now more urgent
than ever. To this end, we advocate for a lightweight, online
profiler tailored to on-device LLMs. Unlike traditional of-
fline profilers, an online profiler enables real-time collection
of fine-grained performance metrics (e.g., latency, memory
usage) during live model execution. These data can be im-
mediately accessed by the application or operating system,
enabling dynamic optimizations, adaptive scheduling, and

SEC 25, December 3-6, 2025, Arlington, VA, USA

Table 1: Comparison of accuracy and on-device decode
throughput of Qwen model generations.

Accuracy T Throughput

Models ARC-Challenge | HellaSwag | GSM8K (tokens/s) T
Qwen-1.5-0.5B 0.293 0.491 0.171 22.76
Qwen-2-0.5B 0.310 0.491 0.364 17.33
Qwen-2.5-0.5B 0.356 0.522 0.416 17.29

" Throughput data are collected on Google Pixel 8 Pro. Model accuracy on individual
tasks is evaluated using the Im-evaluation-harness [32].

informed system-level decisions, key steps toward the practi-
cal democratization of LLMs at the edge. Below, we highlight
two key benefits of a lightweight, online profiler:

Empirical study on on-device LLMs. A lightweight
profiler is essential for enabling accurate, empirical anal-
ysis of LLM behavior on mobile and edge devices. Unlike
cloud-based profiling tools that can tolerate additional sys-
tem overhead, on-device studies demand minimal interfer-
ence with the model’s runtime. A profiler that introduces
significant overhead distorts key performance signals such
as latency, memory usage, and energy consumption, leading
to misleading conclusions about real-world performance. By
keeping overhead low and integrating seamlessly with exist-
ing runtime pipelines, a lightweight online profiler allows
researchers to faithfully observe the system under typical
usage conditions.

Online runtime performance prediction. LLMs gener-
ate output in an autoregressive manner, producing a token
at a time during decoding. For each token, the model em-
beds the input, attends over all previously generated tokens
stored in a growing key-value (KV) cache, processes the re-
sult through transformer layers, samples the next token, and
updates the KV cache. The computational cost of this pro-
cess increases approximately linearly with sequence length,
while hardware-level factors on mobile and edge devices,
such as dynamic frequency scaling and thermal throttling,
tend to evolve gradually. These properties make throughput
prediction for on-device LLM both feasible and valuable. A
lightweight profiler that measures per-token latency in real
time can exploit these trends to predict future throughput
over short horizons. Such predictions are critical for enabling
dynamic scheduling decisions and system adaptation.

In addition, recent studies have shown that kernel-level
prediction mechanisms can achieve state-of-the-art accuracy
in predicting both latency [26, 27] and energy consump-
tion [28-31] for conventional deep learning models. These
approaches benefit from the fact that kernels serve as funda-
mental scheduling units and encapsulate many framework-
level optimizations. On-device LLM systems can adopt sim-
ilar strategies by accurately profiling fine-grained, kernel-
level execution data.

SEC 25, December 3-6, 2025, Arlington, VA, USA

2.3 Limitations of Existing Profilers

As shown in Table 2, most existing profilers for mobile and
edge platforms were not designed with LLM inference in
mind, and therefore fall short of meeting the requirements
outlined in Section 2.2. Specifically, offline profilers such as
Android GPU Inspector (AGI) [33] and Perfetto [34] collect
raw execution traces during runtime but rely on extensive
post-processing, often on a host machine, to extract meaning-
ful insights. This delayed analysis pipeline, which involves
exporting logs, synchronizing metadata, and using external
visualization tools, makes them unsuitable for real-time adap-
tation and on-device scheduling. Furthermore, these tools
lack kernel-level visibility, which is essential for capturing
the fine-grained behaviors of LLM execution.

Recently, several online profilers have been developed for
on-device learning scenarios, including MELTing Point [35]
and nnPerf [36]. However, both exhibit several limitations.
MELTing Point reports only the average duration of each
GPU kernel in isolation, while capturing cumulative runtime,
it lacks timeline visibility and does not provide fine-grained
start/end timestamps or show how kernels are sequenced
and interleaved. As a result, it fails to reveal runtime be-
haviors such as kernel launch delays, inter-kernel gaps, or
scheduling contention. More importantly, enabling MELTing
Point’s kernel-level tracing introduces substantial latency
overhead (see Fig. 4), making it unsuitable for accurate kernel-
granular analysis of on-device LLM inference. nnPerf [36],
on the other hand, was primarily designed for smaller con-
volutional or feedforward models, such as MobileNet, Effi-
cientNet, and ResNet. While effective for traditional DNNss,
it lacks support for the unique computational characteristics
of LLMs, which involves dynamic input lengths, token-level
scheduling bottlenecks, and interleaved execution phases,
e.g., embedding, prefill, autoregressive decoding, softmax,
and token sampling.

To this end, we propose LM-METER, a lightweight, online pro-
filer that enables LLM phase-aware and fine-grained kernel-
level latency tracing, specifically designed for on-device LLM
inference. LM-METER equips researchers and system designers
with transparent and deeper visibility into runtime behavior of
LLMs on resource-constrained platforms, facilitating informed
optimization, adaptive scheduling, and accelerating the democ-
ratization of intelligent on-device systems.

3 LM-METER Design
3.1 Phase-level Latency Profiling

Phase-level inference latency refers to the runtime spent in
distinct functional stages of LLM execution, such as embed-
ding, prefill, decode, softmax, and token sampling. Unlike
end-to-end (E2E) latency, which offers a coarse aggregate

Haoxin Wang et al.

Table 2: LM-METER vs. existing profilers for mobile and
edge hardware.

Profilers Support Phase Kernel- | Timeline Low Real-time | No-host
LLMs | awareness | level | visibility | overhead | output | machine

AGI [33] v v X v v X X

Perffeto [34] v v X v v X X

TFLite

benchmark [37] X X v X v X X

nnPerf [36] X X v v v v v

MELT [35] v v v X X v v

LM-METER

(Ours) v v v v v v v

" Timeline visibility: whether the profiler can log and reconstruct an execution timeline with start/end times-
tamps for each kernel, data transfer, and GPU idle period.

 Phase awareness: whether the profiler can distinguish major LLM inference phases and report per-phase
latency attribution and bottleneck analysis.

* No-host machine: whether the profiler operates independently on-device without relying on an auxiliary
machine to run or process measurements.

metric, phase-level profiling provides a semantically mean-
ingful decomposition of the inference pipeline. This finer
granularity brings several advantages. First, it enables precise
bottleneck diagnosis by identifying which stages dominate
latency, thereby guiding targeted optimizations. Second, it
uncovers how different hardware architectures interact with
individual phases, supporting platform-aware deployment
and tuning. Third, it prevents misleading conclusions that
may arise from aggregated E2E metrics by revealing hetero-
geneous performance characteristics across phases. Lastly,
phase-level latency traces lay the groundwork for accurate
runtime modeling, an essential capability for dynamic sched-
uling and improving interactive responsiveness in on-device
LLM systems.

Unfortunately, directly profiling phase-level latency for
on-device LLMs via application-level APIs is infeasible. First,
application-level timing is inherently imprecise. User-facing
apps typically interact with inference runtimes through high-
level wrappers (e.g., Java/Kotlin on Android or Swift on i0S),
which expose only coarse-grained timing signals, such as
those from SystemClock, spanning the entire model dis-
patch. These measurements also include overheads from li-
brary calls, runtime transitions, and language bindings (e.g.,
JNI bridges to native C++), obscuring the true execution
time. Second, application-level instrumentation lacks visibil-
ity into internal phase boundaries of LLM inference, which
are handled within the native runtime.

To enable accurate phase-level latency measurements,
LM-METER instruments the native inference engine, such
as MLC [38], at the runtime level. Specifically, we insert
lightweight trace timers into the C++ backend, placed imme-
diately before and after each semantic phase. Each timer is
implemented using std: : chrono: : steady_clock, a mono-
tonic clock provided by the C++ chrono library, wrapped
in a custom time utility to ensure consistent collection.
We select steady_clock after systematic evaluation, based
on the following practical advantages: (i) It is monotonic

LM-METER: Unveiling Runtime Inference Latency for On-Device Language Models

and immune to wall-clock adjustments, ensuring timestamp
differences are reliable. (ii) It is supported across all ma-
jor platforms (Linux, Android, i0S, macOS, and Windows),
as required by the C++ standard, enabling portable instru-
mentation without platform-specific code. (iii) On modern
systems, steady_clock maps to high-resolution hardware
clocks, typically offering sub-microsecond precision, suf-
ficient for capturing LLM phase durations ranging from
microseconds to hundreds of milliseconds. (iv) The call
to steady_clock: : now() incurs minimal overhead. Conse-
quently, steady_clock strikes an effective balance between
portability, accuracy, and low instrumentation overhead,
making it a robust choice for fine-grained latency profil-
ing in resource-constrained environments. Additionally, LM-
METER tags each timing record with its corresponding phase
name and sequence index, enabling alignment with the in-
put prompt sequence and per-token generation steps. This
facilitates per-token phase-level latency analysis, providing
fine-grained insights into the temporal behavior of LLM in-
ference across the generation sequence.

3.2 Kernel-level Latency Profiling

A kernel typically serves as the fundamental unit of schedul-
ing and execution in modern machine learning (ML) frame-
works, especially on mobile and edge platforms [26]. The
execution latency of individual kernels is highly sensitive to
hardware characteristics, including compute capacity, mem-
ory bandwidth, and cache hierarchy. As a result, kernel per-
formance can vary significantly across devices and fluctuate
even on the same device due to dynamic resource contention
from background applications. Hence, accurate, online profil-
ing of kernel-level latency is essential for identifying perfor-
mance bottlenecks and enabling hardware-aware optimiza-
tions, which includes device-specific kernel tuning, dynamic
scheduling strategies, all of which are crucial for maximizing
efficiency in on-device LLM systems.

However, accurate kernel-level runtime latency profiling
for on-device LLMs faces two challenges, recognized in the
broader systems research community. First, inserting trace
timers directly into individual GPU kernel source code is
infeasible because most mobile GPU drivers and runtime
libraries are proprietary and closed-source. Second, modern
ML compilers, such as TVM [39] and LiteRT [40], translate a
graph of high-level operators (e.g., Dequantize — MatMul
— Add — RMSNorm) into fused GPU kernels. During this
process they apply kernel-fusion passes that merge multiple
adjacent operators into a single launch to minimize memory
traffic and kernel-launch overhead. These fusion passes are
driven by heuristic cost models, autotuning, or backend-
specific templates but the resulting fusion strategies and
kernel boundaries are opaque to users.

SEC 25, December 3-6, 2025, Arlington, VA, USA

OPENCL_CALL (clGetEventProfilingInfo(
ev, CL_PROFILING_COMMAND_QUEUED, sizeof(r->t_queued_ns),
&r->t_queued_ns, nullptr));

OPENCL_CALL (c1lGetEventProfilingInfo(
ev, CL_PROFILING_COMMAND_SUBMIT, sizeof(r->t_submit_ns),
&r->t_submit_ns, nullptr));

OPENCL_CALL (clGetEventProfilingInfo(
ev, CL_PROFILING_COMMAND_START, sizeof(r->t_start_ns),
&r->t_start_ns, nullptr));

OPENCL_CALL (clGetEventProfilingInfo(
ev, CL_PROFILING_COMMAND_END, sizeof(r->t_end_ns),
&r->t_end_ns, nullptr));

Figure 1: Code snippet for querying OpenCL kernel-
execution timestamps.

To address these challenges, LM-METER leverages the
event callback mechanisms defined in GPU libraries, such
as OpenCL, VulKan, and Metal, to capture the complete life-
cycle of every kernel during model execution, without re-
quiring access to kernel source code. Inspired by nnPerf
[36], this approach enables fine-grained kernel-level pro-
filing even in closed-source environments. Using OpenCL
as an example, the runtime maintains three queues, the
command queue, host queue, and device queue. After model
compilation, the interpreter constructs a command queue,
where each entry represents either a GPU kernel invocation
or a data movement operation. During inference, each en-
try from the command queue are copied to the host queue
(CPU) and finally enqueued into the device queue (GPU)
chronologically for execution. LM-METER instruments this
process by attaching profiling callbacks to each OpenCL
command via the native c1_event interface. Specifically, it
queries the c1_event object associated with each entry using
clGetEventProfilingInfo, which exposes four standard-
ized profiling nanosecond-resolution timestamps:

e CL_PROFILING_COMMAND_QUEUED: when the command
(e.g., a kernel launch or data movement) is enqueued into
the command queue;

e CL_PROFILING_COMMAND_SUBMIT: when the command is
submitted by the host to the device queue;

o CL_PROFILING_COMMAND_START: when the device actually
begin execution of the command,;

o CL_PROFILING_COMMAND_END: when the device complete
execution of the command.

A code snippet illustrating this is shown in Fig. 1. Addi-
tionally, LM-METER maintains a lightweight per-kernel data
structure containing: the kernel name, a pointer to its as-
sociated command queue, a host-side enqueue timestamp
t_cpu_enqueue_ns, and the four device-side timestamps
(t_queued_ns, t_submit_ns, t_start_ns, and t_end_ns).
These measurements allow us to reconstruct the full execu-
tion timeline for each kernel launch during inference. They
also enable precise attribution of latency across three key

SEC 25, December 3-6, 2025, Arlington, VA, USA

stages: (i) host-to-device queuing, (ii) scheduling and dis-
patch delays within the device runtime, and (iii) device-side
kernel execution.

3.3 From Latency to Energy and Adaptation

LM-METER is designed with extensibility in mind and pro-
vides the infrastructure hooks to enable future work.
Energy profiling. While LM-METER currently targets la-
tency analysis, its modular architecture readily supports in-
tegration with energy and power measurement tools, such as
built-in current sensor on mobile devices or external power
monitor like Monsoon [41]. Time-aligned phase- and kernel-
level traces make it a solid foundation for profiling on-device
LLM energy and for joint latency—-energy optimization.
Runtime system adaptation. Although adaptation mech-
anisms are not implemented in this study, LM-METER can
serve as a telemetry backend for adaptive LLM systems.
Real-time profiling signals can inform an Adaptation Engine
to dynamically adjust model selection, resource allocation,
or execution strategies (e.g., model switching, frequency
scaling, or phase skipping) in response to runtime condi-
tions. By delivering structured latency feedback during infer-
ence, LM-METER opens new opportunities for fine-grained,
performance-aware adaptation in on-device LLMs.

4 Evaluation

In this section, we present a comprehensive evaluation of
LM-METER’s profiling accuracy and system overhead on com-
mercial mobile devices. We begin by detailing the implemen-
tation of LM-METER, followed by an in-depth analysis of its
phase- and kernel-level profiling performance. We conclude
with an assessment of the system overhead incurred. This
evaluation is essential to demonstrate that LM-METER pro-
vides reliable, high-fidelity measurements while remaining
lightweight enough for real-time on-device LLM profiling.

4.1 LM-METER Implementation

We implement LM-METER on top of the MLC framework
[38] and TVM [39], comprising approximately 3,500 lines of
C++ (e.g., instrumentation and profiler runtime), Python (e.g.,
model compilation, build tooling, and data post-processing),
and Java/Kotlin (e.g., Android app) code to support the cross-
stack nature of on-device LLM deployment, which span both
back-end systems and front-end interfaces. Since OpenCL-
based GPU acceleration is widely supported by mainstream
ML frameworks, such as LiteRT (formerly known as Ten-
sorFlow Lite) [40], ONNX [42], OpenVINO [43] and others,
LM-METER is designed to be readily portable to alternative
frameworks. While implementation details may differ across
frameworks, the core profiling and instrumentation logic
can be adapted with minimal effort.

Haoxin Wang et al.

Table 3: Mobile devices used in our experiments.

Devices ‘ SoCs ‘ RAM ‘ Year ‘ Tier
Google Pixel 8 Pro | Google Tensor G3 | 12GB | 2024 | High
Google Pixel 7 Google Tensor G2 | 8GB | 2023 | Mid
Google Pixel 6 Google Tensor 8GB | 2022 | Low

To ensure experimental repeatability, we fix the input
prompts and set the maximum number of generation tokens.
We configure the sampling parameters to temperature =
0.0 and top_p = 1.0, and disable stop strings to enforce
deterministic token generation during profiling. Unless oth-
erwise specified, all experiments are repeated three times,
and we report the average results. All experimental results
presented in Sections 4 and 5 are obtained using three com-
mercial mobile platforms, summarized in Table 3. We present
selected device combinations in each section to balance hard-
ware diversity within space constraints.

Proposed profiling evaluation metrics. To rigorously
assess the profiling accuracy, we define two complementary
metrics for each phase or kernel k:
(1) Accuracy ay (%):

LM _ ,GT
@ = (1—%)“0@ (1)
k
where and t]S’T denote the latency measured by Lm-
METER and the ground-truth latency, respectively, in
milliseconds. a; quantifies the proportion of the true
execution time correctly captured by LM-METER.
(2) Scaled error rate g; (us/ms):

& = 10° Ay [ps]
k t]?T [ms]

LM
tk

(ps per ms), ()

where Ag t]?T \ By normalizing the absolute
error by the ground-truth runtime (in milliseconds), &
measures the number of microseconds of error incurred
per millisecond of actual execution time. This unitless
quantity is typically on the order of O(1), offering an
intuitive sense of relative error magnitude.

- |4 -

In summary, oy provides a direct measure of ground-truth
coverage as a percentage (higher is better), while £} quanti-
fies the absolute timing error normalized by runtime (lower is
better). Together, these metrics offer complementary relative
and absolute perspectives on the fidelity of the profiler.

4.2 Phase-Level Profiling Performance

Phase-level latency ground-truth. To evaluate the ac-
curacy of phase-level profiling, we first establish a trusted
baseline reference using AGI, which does not natively sup-
port phase-aware latency measurement for LLM inference.

LM-METER: Unveiling Runtime Inference Latency for On-Device Language Models

Table 4: Phase-level profiling accuracy on Pixel 8 Pro.

Models Phases Lir_ﬁi?i;atemigs) a (%) | e*(us/ms)
Embedding 0.8038 07763 | 96.46 | 35.412
Lt Prefill 3433.8628 3433.8142 | 99.99 | 0.014
w5 Decode 62.5669 62.5303 | 99.94 | 0.585
L@ Softmax 142.6166 142.6542 | 99.97 | 0.264
.LED i CopyProbsToCPU 0.4929 0.4616 93.22 67.718
- Sampling 0.0675 0.0824 | 81.86 | 181.439
End-to-end 3640.4104 3640.3191 | 99.99 | 0.025
Embedding 0.7659 0.7398 | 96.48 | 35.226
Prefill 9301.1318 9301.0589 | 99.99 | 0.008
N Decode 54.5909 54.5557 | 99.94 | 0.646
o Softmax 502.3319 502.3698 | 99.99 | 0.076
§ ~ CopyProbsToCPU | 0.5570 0.5255 | 94.02 | 59.829
Sampling 0.1698 0.1830 | 9276 | 72365
End-to-end 9859.5473 9859.4329 | 99.99 | 0.012
Embedding 0.6858 0.6636 | 96.66 | 33.428
Lo Prefill 5023.1182 5023.0765 | 99.99 | 0.008
Eh Decode 34.6845 346534 | 9991 | 0.897
=9 Softmax 188.1463 188.1779 | 99.98 | 0.168
? 2> | CopyProbsToCPU | 0.3887 0.3602 | 92.10 | 78.980
e Sampling 0.0504 0.0669 | 75.36 | 246.372
End-to-end 5247.0738 5246.9985 | 99.99 | 0.014
Embedding 0.6753 0.6531 | 96.60 | 33.975
D M Prefill 7630.7553 7630.6979 | 99.99 | 0.008
o Decode 49.3840 49.3499 | 99.93 | 0.690
éé a1 Softmax 437.0047 437.0459 | 99.99 | 0.094
3 2 2 | CopyProbsToCPU 0.4206 0.3888 91.84 81.565
Sz Sampling 0.0671 0.0786 | 85.41 | 145.949
End-to-end 81183069 8118.2143 | 99.99 | 0.011
R Embedding 0.9844 0.9671 | 98.21 | 17.909
5 Prefill 2399.3860 2399.3246 | 99.99 | 0.026
o5 Decode 447612 44.7377 | 99.95 0.527
3= Softmax 221.8416 221.8672 | 99.99 | 0.116
§ i CopyProbsToCPU | 0.3081 0.2854 | 92.05 | 79.532
3 Sampling 0.0300 0.0394 | 76.06 | 239.395
” End-to-end 2667.3113 2667.2214 | 99.99 | 0.034

To enable AGI-based tracing for on-device LLM inference, we
extend the MLC runtime with instrumentation support via
the Perfetto Tracing SDK. Specifically, we define and insert
phase-level annotations using the TRACE_EVENT () macro
[34] to mark key inference phases, such as embedding, prefill,
decoding, softmax, sampling, and probability transfer to CPU.
All events are grouped under a unified tracing category (e.g.,
“llm”), which is statically registered during runtime initializa-
tion. During profiling, the target mobile device is connected
via USB to a host machine running AGI. Upon completion
of inference tasks, AGI generates a binary .perfetto trace
file, which we post-process to extract timestamped phase
events. In parallel, LM-METER captures phase-level timing
data in real time, enabling a direct comparison against the
AGI measurements.

Evaluation of phase-level profiling accuracy. Table 4
presents a comparison of phase-level runtime latencies mea-
sured by LM-METER against baseline values obtained using
AGI across five LLMs. These models span a wide range of

SEC 25, December 3-6, 2025, Arlington, VA, USA

scales, from 360 million to 3 billion parameters, and rep-
resent a diverse set of architectural designs. Among them,
SmolLM2-360M-Instruct operates entirely in FP16 preci-
sion (unquantized), while the remaining models employ
group-wise 4-bit weight quantization with 16-bit activations.
Each experiment is repeated three times, with ten prompt-
response turns per run. We report the mean latency in Ta-
ble 4. Across all models and phases, LM-METER consistently
demonstrates high profiling accuracy, achieving end-to-end
latency accuracy' of @ > 99.99% and scaled error er <0.034
us/ms, indicating that LM-METER introduces only negligible
deviation from AGI measurements.

Additionally, inference phases with the greatest impact on
end-to-end latency, including prefill, decode, and softmax,
are profiled with exceptional accuracy. These phases account
for over 99% of total inference time, as shown in Fig. 2, and
exhibit profiling accuracy of & > 99.91% and ¢ < 0.897
us/ms. The only notable outlier is the sampling phase. On
the Pixel 8 Pro, a single sampling phase typically completes
within just 50-80us, making it highly sensitive to profiling
noise. Consequently, the inherent +1-3 ys timing variability
of LM-METER constitutes a substantial fraction of the total
phase duration. This results in noticeably reduced profiling
accuracy (o = 75-92%) and elevated scaled error (51: < 246
us/ms). Note that this reduced accuracy is not caused by
limitations in the profiler’s granularity. Rather, it likely re-
sult from the inherent difficulty of measuring an extremely
short, partially host-bound routine whose execution time
is comparable to system-level noise, such as OS scheduling
jitter and CPU-GPU synchronization delays.

In summary, these results collectively demonstrate that
LM-METER delivers accurate and reliable phase-level profiling
across a wide range of model scales and architectures.

4.3 Kernel-Level Profiling Performance

Kernel-level latency groundtruth. Due to the lack of ex-
isting profilers capable of accurately capturing kernel-level
latency for on-device LLMs (§2.3), we estimate ground-truth
latencies using a custom kernel duplication technique. Specif-
ically, for each target kernel within an LLM inference phase,
we perform the following two-step profiling:

o Baseline profiling: We first profile the unmodified model
using AGI, recording the latency of each inference phase
as t;, where i indexes the phases (e.g., embedding, prefill,
decode, softmax).

o Kernel-duplicated profiling: We compile a modified model
where the target kernel is duplicated n times and inserted
immediately after its original invocation within the same
phase. Profiling this modified model yields updated phase

. .d
latencies ¢; up,

1End-to-end latency is computed as the sum of all phase latencies.

SEC 25, December 3-6, 2025, Arlington, VA, USA

[0 Embedding B Prefill 3 Softmax [CopyProbsToCPU B Sampling

Haoxin Wang et al.

[Embedding [Decode [Softmax [CopyProbsToCPU ~ EEEE Sampling

LM-METER

LM-METER

0 5000 10000 15000 20000 25000 30000 35000 40000
Time (ms)

(a) Single prefill step. (Total absolute error = 0.2739ms)

1016.5 1017.0 1017.5

(200 400 600 800 1000
Time (ms)

(b) Three consecutive decode steps. (Total absolute error = 0.1643ms)

Figure 2: Phase-level latency comparison between LM-METER and AGI on Pixel 8 Pro running a quantized

gemma-2-2b-it (4-bit weights, 16-bit activations).

Table 5: Kernel-level runtime latency profiling results on Google Pixel 8 Pro and Pixel 7.

Google Pixel 8 Pro Google Pixel 7
Kernels Phases fl\;i)ﬁl;;i;:tency CE?S) @ (%) *(us/ms) | @ (%) | e*(us/ms)
dequantizel1_NT_matmul5 81.1899 82.1329 98.85 11.481 98.88 11.212
dequantize2_NT_matmulé Prefill 31.3407 31.7568 98.69 13.103 95.18 48.209
dequantize3_NT_matmul7 330.3757 332.7218 99.29 7.051 98.87 11.328
dequantize4_NT_matmul8 367.5603 | 367.0284 | 99.86 (highest) 1.449 99.11 8.896
dequantizel_NT_matmull1@ 0.3643 0.3737 97.46 25.391 97.19 28.145
dequantize2_NT_matmull1l 0.2062 0.2006 97.23 27.706 98.14 18.587
dequantize3_NT_matmull2 1.3813 1.3601 98.44 15.587 98.17 18.267
dequantize4_NT_matmull3 0.6862 0.6586 95.81 41.921 97.50 25.044
dequantize_NT_matmul14_divide2_tir_tanh2_multiply8 Decode 18.4379 18.3619 99.59 4.147 98.13 18.705
add_norm_prefill 0.1149 0.1059 91.51(lowest) 84.891 93.29 67.080
rms_norm2 0.1037 0.1092 94.93 50.641 92.65 73.531
split2_gelu_tanh2_multiply7 0.0952 0.0939 98.62 13.727 93.75 62.517
multiply6 0.1061 0.1005 94.35 56.546 90.31 96.934
chunk_lse Softmax 0.2718 0.2839 95.53 44.735 99.39 6.026
softmax_with_chunked_sum 0.2376 0.2392 99.33 6.689 99.40 5.992
dequantize_takel Embedding 0.1034 0.1097 94.26 57.429 95.73 42.676

We estimate the ground-truth latency of the target kernel as:
dup
%. We set n = 50 for kernels with expected execution

latency exceeding 1ms, and n = 1000 for shorter kernels.
This procedure is repeated independently for each kernel of
interest to obtain reliable per-kernel latency estimates.

To implement the kernel duplication technique without
introducing extra overhead or altering the semantics of
the model, we modify the model compilation pipeline in
MLC, which includes the code generation (codegen) path
for kernel emission. Specifically, (1) the kernel generation
is extended to emit n back-to-back copies of target kernel,
preserving the original data dependencies; (2) optimization
passes that may eliminate unused or redundant code, such as
remove_all_unused and DeadCodeElimination are explic-
itly disabled to retain the duplicates; and (3) CPU and GPU
frequencies are fixed to eliminate variability from dynamic
voltage and frequency scaling (DVFS), and all non-essential

foreground/background applications are terminated to mini-
mize system-level noise. Fig. 3 shows kernel duplication for
fused_dequantize2_NT_matmull1 in decode phase.
Evaluation of kernel-level profiling accuracy. Table 5
presents kernel-level latency measurements captured by Lm-
METER on both the Google Pixel 8 Pro and Pixel 7, com-
pared against ground-truth (GT) values collected via AGI
with kernel duplication. Across both platforms, LtM-METER
consistently delivers high profiling accuracy at kernel gran-
ularity. Specifically, on the Pixel 8 Pro, the mean and me-
dian accuracy across all 16 evaluated kernels are 96.82% and
97.35%, respectively. On the Pixel 7, the corresponding val-
ues are 96.61% and 97.81%. Even in the worst-case scenario,
multiply6, LM-METER achieves 90.31% accuracy. The four
GEMM kernels within the prefill phase, which dominate the
total inference latency, are profiled with near-perfect accu-
racy. On the Pixel 8 Pro, these kernels achieve 98.69 % to
99.86 % accuracy with scaled error rates ¢* < 13.1ps/ms;
they reach 95.18 % to 99.11 % accuracy with £* < 48.2 us/ms

LM-METER: Unveiling Runtime Inference Latency for On-Device Language Models

fused_rope
tir_kv_cache_transpose_append
batch_decode paged kv

’_> 49 Execution start
€ Execution end
-

uantize2 NT
uantize2 NT

Juantize2 NT
other duplica
uantize2 NT_ma
uantize2 NT_ma
uantize2 NT ma
fused_dequantize2 NT matmull
ms_norm?2

Pe

=]
—_

2 9 10 11

Time (ms)

Figure 3: Illustration of kernel duplication for
fused_dequantize2_NT_matmull1, showing the original
kernel (red) and its 50 duplicated instances (green). A
broken x-axis with omitted rows is used to save space.

on the Pixel 7. Moreover, LM-METER also demonstrates high
accuracy on micro-kernels with true runtimes under 1 ms.
On the Pixel 8 Pro, these kernels achieve a mean accuracy
of 95.44 % and a median of 95.23 %; on the Pixel 7, the mean
and median accuracy are 95.73 % and 96.46 %, respectively.

In summary, these results validate LM-METER’s reliability
in accurately capturing the latency of both latency-dominant
kernels and short-duration micro-kernels.

4.4 System Overhead

Since LM-METER performs online profiling directly on mobile
devices, its practicality depends critically on introducing
minimal latency overhead. To quantify this overhead, we
measure the throughput (in tokens per second) of the two
primary inference phases, prefill and decode, under three
CPU governor configurations that emulate varying levels of
on-device resource availability: (1) Performance: All CPU
cores are prioritized to operate at their peak frequencies;
(2) Conservative: Dynamic DVFS with a bias toward lower
frequencies; (3) Powersave: All CPU cores are prioritized to
run at their minimum frequencies.

We compare LM-METER against two baselines: (1) No pro-
filing and (2) MELTing Point [35], a state-of-the-art profiler
for on-device LLMs. Fig. 4 summarizes the results. Across
all CPU governors, LM-METER consistently imposes negli-
gible throughput degradation. Under the Performance and
Conservative governors, its throughput closely matches
that of the no-profiling baseline for both phases. Even un-
der the Powersave setting, where system resources are most
constrained, LM-METER exhibits only a modest throughput
reduction of 2.58% for prefill and 0.99% throughput for de-
code. In contrast, MELTing Point incurs substantial profiling
overhead in all three settings, especially under Powersave,
where its throughput drops by 22% for prefill and by more
than 93% for decode. These results underscore the efficiency

SEC 25, December 3-6, 2025, Arlington, VA, USA

Table 6: Model suites for phase-oriented study.

Model suites | Model scales (parameters) Precision | HuggingFace collections
Pythia [44] | {70M, 160M, 410M, 1B, 1.4B} | float16 EleutherAl/pythia
SmolLM2 [45] | {135M, 360M, 1.7B} bfloat16 | HuggingFaceTB/SmolLM2
Qwen1.5 [25] | {0.5B, 1.8B} bfloat16 Qwen/Qwenl1.5

Table 7: Evaluation tasks for phase-oriented study.

Tasks Full datasets | Sampled subsets
ARC-Easy [46] 2.38k prompts 238 prompts
ARC-Challenge [46] | 1.12k prompts 112 prompts
HellaSwag [47] 10k prompts 100 prompts
GSMBSK [48] 1.32k prompts 131 prompts

Categories

Knowledge ability

Inference ability

of LM-METER and affirm its suitability for real-time, online
profiling in resource-constrained mobile environments.

5 On-Device LLM Empirical Study

Through LM-METER, we conduct two empirical studies: phase-
oriented and kernel-oriented, to illuminate realistic perfor-
mance behavior of on-device LLMs.

5.1 Phase-oriented Empirical Study

In this section, we present a phase-oriented empirical study
of on-device LLMs and an in-depth analysis leveraging our
LM-METER. The goal is to characterize the trade-offs between
model accuracy and efficiency during the prefill and decode
phases across diverse tasks, model suites, and parameter
scales. To our knowledge, this is among the first systematic
explorations of phase-level performance-efficiency trade-offs
in LLM inference for on-device environments, which can
contribute insightful suggestions for optimizing on-device
LLM deployment and lay a foundation for future research.
Model suite selection. We evaluate three representative
model suites: Pythia [44], SmolLM2 [45], and Qwen1.5 [25],
each offering a range of model sizes suited for affordable
on-device deployment. Details are summarized in Table 6.
Task selection. To capture a broad spectrum of model
capabilities, we categorize mainstream evaluation tasks into
two primary skill domains: knowledge ability and reasoning
ability. Knowledge ability measures factual understanding
without additional reasoning, while reasoning ability reflects
multi-step inference grounded in prior knowledge. In this
study, we select two representative datasets for each category,
listed in Table 7. ARC-Easy and ARC-Challenge [46] assess
factual recall and basic comprehension, while HellaSwag [47]
and GSMBK [48] focus on reasoning. Specifically, HellaSwag
evaluates commonsense reasoning in everyday contexts, and
GSMSK targets multi-step mathematical problem solving.
These tasks vary in complexity and input length, offering a
diverse view of inference behavior across different demands.

SEC 25, December 3-6, 2025, Arlington, VA, USA

Haoxin Wang et al.

@78 No PROFILING 8327 8319
NN Lm-METER
6 MELT1NG PoiNt

@78 No PROFILING

N -
NN Lm-METER

Throughput (tokens/s)
Throughput (tokens/s)

0.680 0.680 0.636 0.705

6 4 MELT1NG PoiNt

0.679 0.679 0.595

@78 No PROFILING
N Lm-METER
6 4 MELT1NG PoiNt

7.954 7.885

2.703 2.676

Throughput (tokens/s)

0506 0.658 0.641 0513

0.182

T T
Prefill Decode Prefill

(a) CPU governor set to Performance

(b) CPU governor set to Conservative

T 0 -
Decode

T

T
Prefill Decode

(c) CPU governor set to Powersave

Figure 4: Comparison of profiling-induced latency overhead, measured as throughput (tokens/s) during prefill and
decode, under three CPU governors. Results compare LM-METER, MELTing Point [35], and a no-profiling baseline.

Full dataset 0.04

Sampled subset
0.04 0.03

Density

0.02

0.01

0.02

Density

0 50 100 150 0 50 100 150
Token length Token length

(a) ARC-Easy (KL = 0.0195) (b) ARC-Challenge (KL = 0.0311)

20 40 60 80 100 ’ 50 100 150
Token length Token length

(c) HellaSwag (KL = 0.0433) (d) GSM8K (KL = 0.0330)

Figure 5: Token-length distributions of each full dataset (blue) vs. KL-matched subset (orange). We sample 10% of
ARC-Easy, ARC-Challenge, and GSM8K (238, 112, and 131 prompts) and 1% of HellaSwag (100 prompts). Reported
KL divergences measure how closely each subset’s token-length histogram matches the full distribution.

Subset sampling and evaluation. We find that full-
benchmark evaluation of LLMs is often impractical under
constrained resources. First, inference on mobile and edge
hardware is significantly slower than on server-scale acceler-
ators. For instance, running the full HellaSwag test set (10k
prompts) can take hours or even days per model. As the num-
ber of models and tasks grows, evaluation cost scales poorly:
Cost = #models X #tasks X #prompts X inference latency x
#devices. Second, prolonged evaluation risks triggering ther-
mal throttling or battery degradation on mobile devices, in-
curring inconsistent or unreliable measurements.

To address the challenges of full-scale on-device evalu-
ation, we develop a sampling-based approach. Instead of
randomly selecting prompts, which may introduce bias due
to skewed token-length distributions, we apply a Kullback-
Leibler (KL) divergence-based sampling algorithm. This
method selects a representative subset whose token-length
distribution closely matches that of the full dataset, thereby
preserving task complexity and linguistic diversity. To bal-
ance scalability and fidelity, we retain 10% of ARC-Easy,
ARC-Challenge, and GSM8K (238, 112, and 131 prompts, re-
spectively), and 1% subset of HellaSwag (100 prompts), due to
its larger size. Fig. 5 illustrates the token-length distributions
of both the full datasets and our sampled subsets. Notably,
in all cases, the KL divergence remains below 0.0433, demon-
strating high representativeness. Additionally, to streamline

benchmarking across different models and tasks, LM-METER
automates prompt injection from the KL-matched subsets
directly into the LLM inference pipeline. This removes man-
ual interaction and eliminates human-induced variability,
e.g., typing, ensuring consistent, repeatable, and unbiased
runtime measurements.

Accuracy vs. decode/prefill latency. We evaluate phase-
specific efficiency using two metrics: decode latency per out-
put token? and prefill latency per input token>. Model accuracy
on individual tasks is evaluated using the Im-evaluation-
harness [32], while latency profiling is conducted with Lm-
METER. To enable a fair and consistent comparison across
tasks, the accuracy of each model is normalized to the perfor-
mance of LLaMA-33B [3] on the corresponding benchmark.
We perform the same experiments on both Pixel 8Pro and
6. The results are shown in Figs. 6, 7, and 8, from which we
derive the following key observations and implications.

First, prefill emerges as the dominant throughput bottleneck
in on-device LLM inference, in contrast to trends observed in
server-scale deployments. For latency-sensitive, small-batch
inference workloads common in interactive LLM applica-
tions, the autoregressive decode phase is widely recognized

2Decode latency per output token (s/token) measures how quickly the model
generates tokens autoregressively during the decode phase.

3Prefill latency per input token (s/token) quantifies how efficiently the
model processes the input context during the prefill phase.

LM-METER: Unveiling Runtime Inference Latency for On-Device Language Models

ARC-Easy ARC-Challenge

SEC 25, December 3-6, 2025, Arlington, VA, USA

HellaSwag

P

o
3
s

=

3

]

g 0.6

&

=

K|

E 047 —— Pythia suite

E === SmolLM2 suite

=3
o
L

—-= Qwenl.5 suite
7{‘*7 Desired model

2
o

T T T T T T T T T T T T
0.5 1.0 L5 20 25 3.0 3.50.0 0.5 1.0 15 2.0 25 3.0
Prefill latency per input token (s/token) Prefill latency per input token (s/token)

=4
o

T T T T T T T
3500 05 1.0 L5 20 25 30 3500 05 1.0 15 2.0 25 3.0 35

Prefill latency per input token (s/token) Prefill latency per input token (s/token)

Figure 6: Prefill latency per input token vs. accuracy trade-off across LLM suites and tasks on Pixel 8Pro. Bubble
area o model size; accuracy is normalized to LLaMA-33B [3] on each task for fair cross-benchmark comparison.

ARC-Easy

ARC-Challenge

HellaSwag GSM8K

=3

=
o

-
8
]
S 0.6 1
=
=
E 0.4 —— Pythia suite 1
s === SmolLM2 suite
0.2 4 —-= Qwenl.5 suite q

{(Desired model

0.0 T T T T 1 T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20

Decode latency per output token (s/token) Decode latency per output token (s/token)

0.25 0.00 0.05 0.10 0.15 0.20

0.25 0.00 0.05 0.10 0.15 0.20 0.25

Decode latency per output token (s/token) Decode latency per output token (s/token)

Figure 7: Decode latency per output token vs. accuracy trade-off across LLM suites and tasks on Pixel 8Pro.

ARC-Easy ARC-Challenge

HellaSwag

e

4
3

Iy
£
3 0.6
g 0.
E
3 0.4 A
E
S —— Pythia suite
0.2 4 === SmolLM2 suite 1

Y% Desired model

2
o

T T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5
Decode latency per output token (s/token) Decode latency per output token (s/token)

e

T T T T T 1
0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Decode latency per output token (s/token) Decode latency per output token (s/token)

Figure 8: Decode latency per output token vs. accuracy trade-off across LLM suites and tasks on Pixel 6. Qwen1.5-1.8B

is not evaluated due to insufficient memory on the device.

as the primary performance bottleneck on server-scale GPUs.
Its inherently sequential execution and limited batching effi-
ciency lead to significantly lower hardware utilization com-
pared to the highly parallelizable prefill phase. Prior work
has demonstrated that prefill can be up to 100x faster than
decode on a single A100 GPU at batch size 1 [49]. However,
our findings reveal the opposite trend on mobile and edge
devices. For example, when scaling the Pythia from 70M to
1.4B parameters (at batch size 1), the average prefill latency
per input token across four tasks increases dramatically from
0.012 s/token to 1.9 s/token, a 158X slowdown. In contrast,
decode latency per output token grows more moderately,

from 0.015 s/token to 0.15 s/token, representing only a 10X
slowdown. This inversion arises because the prefill requires
processing the entire input context in a single forward pass,
which becomes increasingly expensive on mobile and edge
hardware with constrained compute resources, limited mem-
ory bandwidth, and the lack of support for parallelized prefill.

Implication 1: These observations underscore the need for
phase-specific optimizations tailored to the unique constraints
of on-device LLMs, particularly prefill. While decode-phase
optimizations have been the primary focus in server-scale
LLM inference, such as speculative decoding [11, 50], paged

SEC 25, December 3-6, 2025, Arlington, VA, USA

KV cache [51], and tensor parallelism [52], their effectiveness
in on-device settings remains under-explored.

Second, accuracy-latency trade-offs in on-device LLMs are
highly task-dependent. We observe that the extent to which a
model can balance inference quality (accuracy) and efficiency
(latency) varies significantly across tasks, likely due to differ-
ences in input complexity, prompt structure, and reasoning
requirements. As illustrated in Fig. 7 and 8, for instance, ARC-
Easy comprises relatively simple multiple-choice questions
with short, factual prompts. In this case, reducing model
size significantly improves latency without incurring a steep
accuracy penalty. Compared to Pythia-1.4B, the average
normalized accuracies of Pythia-1B, 410M, 160M, and 70M
degrade by only 9%, 15%, 27%, and 34%, respectively, while
their decode latency per output token improves by 0.6X,
2.2X%, 5.1%, and 10.4X on Pixel 8Pro. This yields a favorable
accuracy-latency Pareto frontier for on-device LLM inference
in resource-constrained environments. In contrast, GSM8K,
a math-intensive benchmark requiring multi-step reasoning,
exhibits the most polarized trade-off. Smaller models yield
high decoding efficiency but produce unusably low accu-
racy, while larger models offer acceptable accuracy only at
the cost of prohibitively high latency. This sharp dichotomy
underscores the difficulty in supporting GSM8K efficiently
on-device without task-specific optimizations. HellaSwag,
which involves longer, narrative-style prompts and common-
sense reasoning, falls between these two extremes. Notably,
a clear “most-balanced” model, Smo1LM2-360M, emerges near
the knee of the Pareto frontier. Finally, even within the same
task category, task difficulty can significantly shape the trade-
off. Compared to ARC-Easy, ARC-Challenge exhibits a flatter
accuracy-latency frontier, where accuracy improves more
slowly with increased latency, and smaller models rapidly
encounter diminishing returns.

Implication 2: These observations suggest that task- and
difficulty-aware adaptive model selection might be crucial
for achieving an optimal balance between performance and
efficiency in on-device LLM deployments. Moreover, not all
task categories are suitable for local processing on mobile
and edge devices. Awareness of task type and difficulty can
also inform decisions about when and how to offload com-
putation to edge or cloud infrastructures, enabling effective
device-server collaboration for LLM inference.

Third, cross-suite differences hint at model architectural
effects, beyond mere parameter scaling. While scaling laws
suggest that increasing model parameter size is the primary
driver of LLM performance [53], our results show that ar-
chitectural design is equally critical, especially for compact
models in on-device settings, in shaping the accuracy-latency
trade-off. For instance, Smo1LM2-360M consistently matches

Haoxin Wang et al.

or outperforms Pythia-1B, a model nearly three times larger,
across all tasks. Notably, SmolLM2 suite advances the Pareto
frontier on benchmarks, such as ARC-Challenge and Hel-
laSwag, achieving higher accuracy with lower decode la-
tency. This is primarily enabled by SmolLM2’s architecture
and pretraining data curation, both carefully optimized for
resource-constrained, on-device inference [20, 54].

Implication 3: These observations suggest that model archi-
tecture, beyond parameter scaling, is a key factor shaping
performance-efficiency trade-offs for compact on-device lan-
guage models (i.e., sub-billion to billion-scale). Targeted ar-
chitectural design or search prior to pre-training may shift
the Pareto frontier as effectively as scaling model size.

Quantization impact on accuracy-latency trade-offs.
Model quantization is a widely adopted technique that re-
duces the precision of weights and activations in LLMs,
thereby lowering memory footprint and computational cost.
However, its practical impact on on-device LLMs remains
underexplored, especially in terms of how quantization shifts
the trade-off between accuracy and runtime latency. Prior
studies have largely focused on theoretical metrics, such as
FLOPs or parameters, while overlooking systematic empiri-
cal evaluation on this perspective. To address this gap, we
propose a new evaluation metric, the Harmonic Quantization
score (HQ), and conduct a benchmarking study across the
aforementioned model suites, tasks, and mobile platforms.
Our goal is to systematically quantify the impact of quanti-

zation on both accuracy and runtime latency. We define the
HQ for task i:

-1
1 1 1 1
HQ; == + + , 3
! (3 (Ma,i M{:eﬁll Mlc};:code)) &)

Af . .
where M,; = 7+, with Af and A; representing the normal-
ized accuracy of the quantized and original models on task

. . .. Ly
i, respectively. Similarly, Mf ;= LT:P’ where L{) and L; , are

the runtime latencies of the quanﬁzed and original model
during inference phase p € {prefill, decode}. The HQ re-
wards quantized models that achieve balanced accuracy and
latency. Its harmonic mean formulation penalizes any severe
degradation in individual components, thus discouraging
improvements that come at the expense of others.

We evaluate 4-bit quantized models from the Pythia and
SmoLM2 suites across multiple tasks. Fig. 9 compares their
HQ scores. First, quantization-induced efficiency gains vary
across model architectures. For Pythia, HQ increases nearly
monotonically with model size, peaking at 1.4B for the more
challenging tasks (ARC-Challenge and GSM8K), while satu-
rating for ARC-Easy beyond 1B. In contrast, SmoLM2 achieves
its best accuracy-latency trade-off at smaller scales (135M-
360M). Second, quantization benefits are task-dependent and
appear correlated with task difficulty. The optimal model size

LM-METER: Unveiling Runtime Inference Latency for On-Device Language Models

N ARC-Easy ARC-CHALLENGE GSMS8K
2.0 *
1.5 4 *
*
Q 1.0 B
x

0.0 4
o

R) M .18 4B o T8
wt‘ma -’? \]t‘oia'xg \]tbxa‘m?ytbla v \]‘_\;;13'X ’32‘“0\}&24‘

1358
ot lsmou‘\l

Figure 9: Task-wise Harmonic Quantization (HQ)
scores (higher is better) across model sizes for Pythia
and SmoLM2. Stars mark the best-balanced model per
suite. Pythia benefits from scaling up to 1.4B, while
SmoLM2 peaks at 135M-360M.

for quantization varies not only across architectures, but
also across tasks within the same suite. For Pythia, the av-
erage HQ rises from 0.982 on ARC-Easy to 1.243 on ARC-
Challenge and 1.260 on GSM8K, indicating that 4-bit quan-
tization yields limited benefit on simpler tasks, but deliv-
ers clear gains on demanding ones. One anomalous case is
SmoLM2-1.7B on GSM8K, whose HQ collapses due to near-
zero accuracy reported by the Im-evaluation-harness. We
have evaluated three different 4-bit quantization schemes for
this model, all yielding similarly poor accuracy. A plausible
explanation is that aggressive 4-bit quantization introduces
significant noise into numerically sensitive layers, such as
those performing multi-step arithmetic.

Implication 4: These results underscore the value of our pro-
posed HQ metric for benchmarking quantization techniques
in on-device settings. Relying solely on accuracy or latency
may hide critical efficiency regressions that impact on-device
deployment. We consider evaluating diverse quantization
techniques using HQ as our future work.

Implication 5: The presence of architecture- and task-specific
sweet spots implies that quantization is not universally bene-
ficial for on-device LLMs. The choice between quantized and
full-precision models should jointly consider model size, task
type, and hardware constraints.

5.2 Kernel-oriented Empirical Study

We then employ LM-METER for a kernel-level analysis of on-
device LLM execution. Since kernels serve as the fundamen-
tal scheduling units and embed numerous framework-level
optimizations, profiling them provides deep visibility into the
true performance landscape and enables characterization of
fine-grained runtime behavior. Our empirical study is guided
by the following research questions: (i) Which kernels domi-
nate runtime latency? (ii) Do these dominant kernels remain

SEC 25, December 3-6, 2025, Arlington, VA, USA

consistent bottlenecks throughout the decode sequence, or
do new ones emerge as the KV cache grows? (iii) How much
of the decode timeline is spent in GPU-idle states? (iv) Can
the observed kernel behaviors be leveraged to predict per-
step decode latency for scheduling and runtime adaptation?
Due to the page limit, we present representative results from
running a 4-bit quantized Gemma-2-2B-it on a Pixel 8 Pro.
These insights expose several system-level inefficiencies and
optimization opportunities, many of which generalize to
other models and platforms.

Kernel runtime performance. Fig. 10(a) depicts fine-
grained start/end timestamps of GPU kernel executions within
a single decode step, illustrating how kernels are sequenced
and interleaved. Notably, frequent gaps between successive
kernel launches (gray regions) lead to over 21% GPU idle
time, making it the second-largest contributor to total la-
tency. These idle periods are primarily attributed to host-
side data preparation delays and I/O stalls. Additionally,
multiple memory-bound short-duration kernels, including
fused_rope (K5), tir_kv_cache_transpose_append (K6),
fuse_add_norm_prefill (K9), and rms_norms (K3), are in-
voked frequently yet contribute less than 10% of total exe-
cution time. Their high invocation frequency, however, in-
creases kernel launch overhead and widens idle gaps, expos-
ing inefliciencies in kernel scheduling and dispatch. More-
over, three fused GEMM Kkernels (K10, K12, K13) dominate
GPU execution, contributing over 60% of total latency. This
confirms that MLP projections are primary compute bottle-
neck during decoding, especially for short sequences, sur-
passing attention-related kernels (K4, K8).

Implication 6: Frequent GPU idle periods reveal opportuni-
ties to enhance system performance and efficiency. Runtime
systems can downscale GPU frequency during idle windows
to save power or overlap lightweight computations to boost
utilization. Moreover, the abundance of short, fragmented
kernels underscores the need for improved kernel fusion strate-
gies tailored to on-device LLMs.

Paged-attention kernel latency. Fig. 11 depicts the av-
erage latency of the batch_decode_paged_kv kernel over
decode steps for four target output token sequence lengths.
This kernel is the core operator for paged attention [51].
We observe that its latency grows nearly linearly with de-
code steps, as each invocation must scan an increasingly
large KV cache. The growth is steeper for longer outputs,
reaching up to 0.9 ms per token by step 250 in the 256-token
case. The right panel compares total GPU idle time for 16-
and 256-token generations. Interesting, generating longer
sequences reduces idle time from 21% to 12%. These results
indicate that long-sequence generation may be ill-suited

SEC 25, December 3-6, 2025, Arlington, VA, USA

= Execution GPU idle ® KE start 8 KEend ® DMV start DMV end

KIS (x1, 0.16 ms) 4 .
K14 (x1, 0.27 ms) 4 !
K13 (x1, 20.13 ms) —
KI2(x26,0.67ms) | o o o o o o o W W A o A H H H M o A A H H H A A
K11 (x26, 0.01 ms) 4 L R I R R I I L S N T S O N S O S
T BT B B e B B e I B I e e e S
KO (XS52,0.03ms) | & o6 46 46 55 46 36 56 46 00 00 4b 40 40 B0 M BH 0b 00 B K B M b0 we s
KS(x26,0.18ms) | 4 & 4 & ¢ 4 4 ¢ ¢ 4 4 4 4 44 444
K7(x26,007ms)4 & & & & & 4 4 & & 4 ¢ & 4 4 4 4 4 4 00 EREREE)

K6(x26,00Ims) - & & & & & & & & 4 8 4 4 6 4.4 00000000000

KS(x26,002ms) | @ & & & & & & & 8 8 4 & & 6 6 4 4 8 8 4 00 00w

K4 (x26, 0.34 ms) 4« LANE SRE SNE SRE UL NRE NN L U S T R AR R N AT E AT SRE UNE AR SRE IR N)

QJXS‘\. lH)‘ PO U I I L U U

2(X1. 0.0T ms)

K1 (x1, 027 ms)

T T T T T
n:u(xl.unonw]
H2D (x13, 0.00 ms) + + ' + + i
20 40 60 80 100
Time (ms)

(a) Timeline view of kernel executions and data movements within a decode step.

Haoxin Wang et al.

(K10) fused_dequantize3_NT_matmul12

(K13) fused_dequantize_fused_NT_matmul14_divide2_tir_tanh2_multiply8
(K12) fused_dequantize4_NT_matmul13
(K4) fused_dequantize]_NT_matmul10
(K8) fused_dequantize2 NT_matmull |
(K7) batch_decode_paged_kv
(K9) fuse_add_norm_prefill
(K3) rms_norm2
(K5) fused_rope
(K1) fused_dequantize_take1
(K14) chunk_lse
(K11) fused_split2_gelu_tanh2_multiply7
(K6) tir_kv_cache_transpose_append
(K15) softmax_with_chunked_sum
(K2) multiply6

0 5 20 25 30
Kernel execution / GPU idle time share (%)

(b) Breakdown of kernel execution time and GPU idle time.

Figure 10: Visualization of kernel execution (KE), data movement (DMV), and GPU utilization in a single decode
step. (a) Each kernel (y-axis) is labeled by index, invocation count, and average runtime; gray regions indicate GPU
idle periods. (b) Kernel names are annotated with indices; red bar shows the GPU idle proportion during decoding.

2
£ 1.0 25
: Token length = 16
w7 0.8 — Tokenlength =32 20
qE) '8 Token length = 64 <
3 E 0.6 Token length = 256 S 15
£ E
s8] o 1
2T 04 iy z 10
28 l/,,_,-“,i'.a"“ v @]
9 ’
B o02q BF 5
o
= T T T T T T 0
0 50 100 150 200 250 16 256

Decode steps

Figure 11: Paged-attention kernel latency grows with
decode steps, while GPU idle time drops with longer
outputs. Each step generates one token.

for resource-constrained devices due to rising per-step la-
tency. Conversely, short-sequence generations leave signifi-
cant headroom for optimizing GPU utilization efficiency.

Implication 7: Among all decode-phase kernels, we observe
that batch_decode_paged_kv is the only one whose latency
scales with decode steps. Modeling this trend enables light-
weight online prediction of per-step latency, supporting effi-
cient scheduling and improved responsiveness in on-device
LLM systems.

5.3 Limitations

This work offers a first step in characterizing on-device LLM
runtime behavior but is limited to a subset of mobile SoCs.
Other edge platforms (Jetsons and Intel NPUs) may exhibit
different bottlenecks and optimization opportunities. Our
compression analysis focuses on post-training 4-bit quantiza-
tion, a popular yet narrow slice of the broader compression
landscape. Techniques like structured pruning, activation
sparsity, and hybrid-precision quantization may yield differ-
ent trade-offs depending on hardware and workload.

6 Related Work

Recent advances in model compression and compiler opti-
mizations have made on-device LLM deployment increas-
ingly feasible [55-57]. Techniques such as quantization [58-
61], knowledge distillation [62], and sparsification [63-65]
reduce model size and computation while preserving accu-
racy. ML compilers like MLC [38], LLMFarm [66], TensorRT-
LLM [67], and llama.cpp [68] unify LLM inference across het-
erogeneous edge platforms, via kernel fusion, quantization-
aware compilation, and hardware-specific tuning. However,
existing evaluations of on-device LLM systems largely focus
on end-to-end latency or task-level accuracy, offering limited
insight into phase- or kernel-level bottlenecks. Our work
complements this direction by introducing a lightweight,
online profiler that enables fine-grained decomposition of
inference latency, providing deeper visibility into runtime
behavior and guiding system-level optimization strategies.

7 Conclusion

In this paper, we present LM-METER, a lightweight online
profiler that provides accurate phase- and kernel-level la-
tency measurements. Using LM-METER, we conduct empirical
studies and uncover actionable insights: prefill is the domi-
nant on-device bottleneck, accuracy-latency trade-offs are
highly task- and architecture-dependent, and our Harmonic
Quantization score offers a holistic view of quantization im-
pact. Kernel-level profiling also reveals substantial GPU idle
time and highlights opportunities for optimization.

Acknowledgments

We thank the reviewers and our shepherd for their insight-
ful comments. This work was supported by funds from Toy-
ota Motor North America.

LM-METER: Unveiling Runtime Inference Latency for On-Device Language Models

References
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D

(10

[11

[13

[14
[15

[16

[t

—

—

—_

= = O

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in Neural Information Processing Systems, 33:1877-1901, 2020.
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt,
Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Roziere, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang,
Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al.
Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda
Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437,
2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. In Proc. the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 4171-4186, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. Language models are unsupervised multitask
learners. OpenAlI blog, 1(8):9, 2019.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. Evaluating large language models trained
on code. arXiv preprint arXiv:2107.03374, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,
Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. Journal of Machine Learning Research,
24(240):1-113, 2023.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-
billion parameter language models using model parallelism. arXiv
preprint arXiv:1909.08053, 2019.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste
Lespiau, Laurent Sifre, and John Jumper. Accelerating large lan-
guage model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
Flashattention: Fast and memory-efficient exact attention with io-
awareness. Advances in Neural Information Processing Systems,
35:16344-16359, 2022.

Stefanos Laskaridis, Stylianos I Venieris, Alexandros Kouris, Rui Li,
and Nicholas D Lane. The future of consumer edge-ai computing. IEEE
Pervasive Computing, 2024.

OpenAlI ChatGPT. https://openai.com/index/chatgpt/. Accessed on
June 2025.

Google NotebookLM. https://notebooklm.google.com/. Accessed on
June 2025.

Haoxin Wang, BaekGyu Kim, Jiang Xie, and Zhu Han. LEAF+ AIO:
Edge-assisted energy-aware object detection for mobile augmented
reality. IEEE Transactions on Mobile Computing, 22(10):5933-5948,
2022.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

SEC 25, December 3-6, 2025, Arlington, VA, USA

Haoxin Wang and Jiang Xie. User preference based energy-aware
mobile AR system with edge computing. In Proc. IEEE INFOCOM,
pages 1379-1388, 2020.

Haoxin Wang, Jiang Xie, and Tao Han. V-handoff: A practical energy
efficient handoff for 802.11 infrastructure networks. In Proc. IEEE ICC,
pages 1-6, 2017.

Hongyu Ke, Wanxin Jin, and Haoxin Wang. Carboncp: Carbon-aware
dnn partitioning with conformal prediction for sustainable edge intel-
ligence. arXiv preprint arXiv:2404.16970, 2024.

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong
Tian, Igor Fedorov, Yunyang Xiong, Ernie Chang, Yangyang Shi, Raghu-
raman Krishnamoorthi, et al. MobileLLM: Optimizing sub-billion
parameter language models for on-device use cases. In Forty-first
International Conference on Machine Learning, 2024.

NVIDIA Corporation. Nvidia H100 tensor core gpu. https://www.
nvidia.com/en-us/data-center/h100/, 2025. Accessed: Feb. 2025.
Soumith Chintala. Meta will have 600k h100-equivalent gpus. https:
//x.com/soumithchintala/status/1748074223187173724, 2024. Accessed:
2025-02-01.

Health Insurance Portability and Accountability Act of 1996
(HIPAA). https://www.cdc.gov/phlp/php/resources/health-insurance-
portability-and-accountability-act-of-1996-hipaa. html#:~:text=At%
20a%20glance,Rule%20t0%20implement%20HIPA A %20requirements.
Accessed on June 2025.

Cong Guo, Feng Cheng, Zhixu Du, James Kiessling, Jonathan Ku, Shiyu
Li, Ziru Li, Mingyuan Ma, Tergel Molom-Ochir, Benjamin Morris,
Haoxuan Shan, Jingwei Sun, Yitu Wang, Chiyue Wei, Xueying Wu,
Yuhao Wu, Hao Frank Yang, Jingyang Zhang, Junyao Zhang, Qilin
Zheng, Guanglei Zhou, Hai Li, and Yiran Chen. A survey: Collaborative
hardware and software design in the era of large language models.
IEEE Circuits and Systems Magazine, 25(1):35-57, 2025.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng,
Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei
Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chenggiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren,
Chuangi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei
Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang,
Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen
technical report. arXiv preprint arXiv:2309.16609, 2023.

Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao,
Yuqing Yang, and Yunxin Liu. Nn-meter: Towards accurate latency
prediction of deep-learning model inference on diverse edge devices.
In Proc. the 19th Annual International Conference on Mobile Systems,
Applications, and Services, pages 81-93, 2021.

Chengquan Feng, Li Lyna Zhang, Yuanchi Liu, Jiahang Xu, Chen-
gruidong Zhang, Zhiyuan Wang, Ting Cao, Mao Yang, and Haisheng
Tan. LitePred: Transferable and scalable latency prediction for
hardware-aware neural architecture search. In Proc. 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI
24), pages 1463-1477, 2024.

Xiaolong Tu, Anik Mallik, Dawei Chen, Kyungtae Han, Onur Altintas,
Haoxin Wang, and Jiang Xie. Unveiling energy efficiency in deep
learning: Measurement, prediction, and scoring across edge devices.
In Proc. the Eighth ACM/IEEE Symposium on Edge Computing, pages
80-93, 2023.

Anik Mallik, Haoxin Wang, Jiang Xie, Dawei Chen, and Kyungtae Han.
EPAM: A predictive energy model for mobile Al In Proc. IEEE ICC,
pages 954-959, 2023.

Xiaolong Tu, Anik Mallik, Haoxin Wang, and Jiang Xie. Deepen2023:
Energy datasets for edge artificial intelligence. In Proc. Tackling Climate

https://openai.com/index/chatgpt/
https://notebooklm.google.com/
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://x.com/soumithchintala/status/1748074223187173724
https://x.com/soumithchintala/status/1748074223187173724
https://www.cdc.gov/phlp/php/resources/health-insurance-portability-and-accountability-act-of-1996-hipaa.html#:~:text=At%20a%20glance,Rule%20to%20implement%20HIPAA%20requirements.
https://www.cdc.gov/phlp/php/resources/health-insurance-portability-and-accountability-act-of-1996-hipaa.html#:~:text=At%20a%20glance,Rule%20to%20implement%20HIPAA%20requirements.
https://www.cdc.gov/phlp/php/resources/health-insurance-portability-and-accountability-act-of-1996-hipaa.html#:~:text=At%20a%20glance,Rule%20to%20implement%20HIPAA%20requirements.

SEC 25, December 3-6, 2025, Arlington, VA, USA

(31

(32

(33
[34

[35

(36

(37

[38
[39
[40
[41
[42

(43

[44

[45

[46

[47

[48

—

—

= =

—

—

= S O

]
]
]

=

=

=

—

=

Change with Machine Learning: Workshop at NeurIPS 2023, 2023.
Xiaolong Tu, Dawei Chen, Kyungtae Han, Onur Altintas, and Haoxin
Wang. Greenauto: An automated platform for sustainable Al model
design on edge devices. In Proc. the 26th International Workshop on
Mobile Computing Systems and Applications, pages 7-12, 2025.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, An-
thony DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu, Alain
Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris
Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya
Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin
Wang, and Andy Zou. The language model evaluation harness, 07
2024.

Android GPU Inspector (AGI). https://developer.android.com/agi. Ac-
cessed on June 2025.

Tracing SDK. https://perfetto.dev/docs/instrumentation/tracing-sdk.
Accessed on June 2025.

Stefanos Laskaridis, Kleomenis Katevas, Lorenzo Minto, and Hamed
Haddadi. Melting point: Mobile evaluation of language transformers.
In Proc. the 30th Annual International Conference on Mobile Computing
and Networking (MobiCom), pages 890-907, 2024.

Haolin Chu, Xiaolong Zheng, Liang Liu, and Huadong Ma. nnPerf:
Demystifying dnn runtime inference latency on mobile platforms. In
Proc. the 21st ACM Conference on Embedded Networked Sensor Systems,
page 125-137, 2023.

TFLite Model Benchmark Tool. https://github.com/sourcecode369/
tensorflow-1/blob/master/tensorflow/lite/tools/benchmark/
README.md. Accessed on June 2025.

MLC LLM: Universal LLM Deployment Engine With ML Compilation.
https://llm.mlc.ai/. Accessed on June 2025.

TVM: open deep learning compiler stack. https://github.com/apache/
tvm. Accessed on June 2025.

LiteRT overview. https://ai.google.dev/edge/litert. Accessed on June
2025.

Monsoon Power Monitor. https://www.msoon.com/specifications.
Accessed on June 2025.

Open Neural Network Exchange. https://onnx.ai/. Accessed on June
2025.

Open-source software toolkit for optimizing and deploying deep learn-
ing models. https://github.com/openvinotoolkit/openvino. Accessed
on June 2025.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie
Bradley, Kyle O’Brien, Eric Hallahan, Mohammad Aflah Khan, Shivan-
shu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia: A suite
for analyzing large language models across training and scaling. In
Proc. International Conference on Machine Learning, pages 2397-2430.
PMLR, 2023.

Smol Models. https://github.com/huggingface/smollm. Accessed on
June 2025.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sab-
harwal, Carissa Schoenick, and Oyvind Tafjord. Think you have
solved question answering? try ARC, the AI2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin
Choi. Hellaswag: Can a machine really finish your sentence? In
Proc. the 57th Annual Meeting of the Association for Computational
Linguistics, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Hee-
woo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton,
Reiichiro Nakano, Christopher Hesse, and John Schulman. Training
verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Haoxin Wang et al.

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun
Kwatra, Bhargav Gulavani, Alexey Tumanov, and Ramachandran Ram-
jee. Taming throughput-latency tradeoff in //m inference with sarathi-
serve. In Proc. 18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24), pages 117-134, 2024.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference
from transformers via speculative decoding. In Proc. International
Conference on Machine Learning, pages 19274-19286. PMLR, 2023.
Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
Efficient memory management for large language model serving with
pagedattention. In Proc. the 29th Symposium on Operating Systems
Principles, pages 611-626, 2023.

Jan Hansen-Palmus, Michael Truong Le, Oliver Hausdérfer, and Alok
Verma. Communication compression for tensor parallel LLM inference.
arXiv preprint arXiv:2411.09510, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Ben-
jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and
Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martin
Blazquez, Guilherme Penedo, Lewis Tunstall, Andrés Marafioti, Hynek
Kydli¢ek, Agustin Piqueres Lajarin, Vaibhav Srivastav, et al. SmolLM2:
When smol goes big—data-centric training of a small language model.
arXiv preprint arXiv:2502.02737, 2025.

Xiang Li, Zhenyan Lu, Donggqi Cai, Xiao Ma, and Mengwei Xu. Large
language models on mobile devices: Measurements, analysis, and in-
sights. In Proc. the Workshop on Edge and Mobile Foundation Models,
pages 1-6, 2024.

Daliang Xu, Wangsong Yin, Hao Zhang, Xin Jin, Ying Zhang, Shiyun
Wei, Mengwei Xu, and Xuanzhe Liu. Edgellm: Fast on-device llm
inference with speculative decoding. IEEE Transactions on Mobile
Computing, 2024.

Jie Xiao, Qianyi Huang, Xu Chen, and Chen Tian. Understanding large
language models in your pockets: Performance study on cots mobile
devices. arXiv preprint arXiv:2410.03613, 2024.

Wengqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao,
Zhiqian Li, Kaipeng Zhang, Peng Gao, Yu Qiao, and Ping Luo. Omni-
quant: Omnidirectionally calibrated quantization for large language
models. arXiv preprint arXiv:2308.13137, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth,
and Song Han. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International Conference on
Machine Learning, pages 38087-38099. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptgq:
Accurate post-training quantization for generative pre-trained trans-
formers. arXiv preprint arXiv:2210.17323, 2022.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-
Chen Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song
Han. Awq: Activation-aware weight quantization for on-device llm
compression and acceleration. Proc. Machine Learning and Systems,
6:87-100, 2024.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. MiniLLM:
Knowledge distillation of large language models. arXiv preprint
arXiv:2306.08543, 2023.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models
can be accurately pruned in one-shot. In International Conference on
Machine Learning, pages 10323-10337. PMLR, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and
effective pruning approach for large language models. arXiv preprint
arXiv:2306.11695, 2023.

https://developer.android.com/agi
https://perfetto.dev/docs/instrumentation/tracing-sdk
https://github.com/sourcecode369/tensorflow-1/blob/master/tensorflow/lite/tools/benchmark/README.md
https://github.com/sourcecode369/tensorflow-1/blob/master/tensorflow/lite/tools/benchmark/README.md
https://github.com/sourcecode369/tensorflow-1/blob/master/tensorflow/lite/tools/benchmark/README.md
https://llm.mlc.ai/
https://github.com/apache/tvm
https://github.com/apache/tvm
https://ai.google.dev/edge/litert
https://www.msoon.com/specifications
https://onnx.ai/
https://github.com/openvinotoolkit/openvino
https://github.com/huggingface/smollm

LM-METER: Unveiling Runtime Inference Latency for On-Device Language Models SEC ’25, December 3-6, 2025, Arlington, VA, USA

[65] Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-pruner: On the [67] TensorRT-LLM. https://github.com/NVIDIA/TensorRT-LLM. Accessed
structural pruning of large language models. Advances in Neural on June 2025.
Information Processing Systems, 36:21702-21720, 2023.

[68] llama.cpp. https://github.com/ggml-org/llama.cpp. Accessed on June
[66] LLMFarm. https://github.com/guinmoon/LLMFarm. Accessed on June 2025.

2025.

https://github.com/guinmoon/LLMFarm
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/ggml-org/llama.cpp

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Why Democratizing On-Device LLMs
	2.2 Why a Lightweight Online Profiler Matters
	2.3 Limitations of Existing Profilers

	3 lm-Meter Design
	3.1 Phase-level Latency Profiling
	3.2 Kernel-level Latency Profiling
	3.3 From Latency to Energy and Adaptation

	4 Evaluation
	4.1 lm-Meter Implementation
	4.2 Phase-Level Profiling Performance
	4.3 Kernel-Level Profiling Performance
	4.4 System Overhead

	5 On-Device LLM Empirical Study
	5.1 Phase-oriented Empirical Study
	5.2 Kernel-oriented Empirical Study
	5.3 Limitations

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

