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Abstract

Multi-view camera-based 3D object detection through unified Bird’s
Eye View (BEV) representation has become popular for autonomous
driving due to its low cost, but efficiently inferring precise spatial
and temporal information from cameras alone remains a significant
challenge. Transformer-based approaches have shown substantial
performance improvements but have the drawback of quadratic
memory complexity — making these architectures ill-suited for
edge deployment. Recently, State Space Models (SSMs) offer a more
favorable balance of computational efficiency and performance
in 2D vision, suggesting that they could help here as well. We
present TinyBEV, an efficient BEV framework for multi-view 3D
perception. For spatial modeling, we replace cross attention with
SSMs that fusing BEV and camera images with linear complexity.
For temporal modeling, we adopt a lightweight, linear-complexity
history-fusion scheme that uses explicit time conditioning and
channel-level aggregation instead of cross-frame attention. Both
fusion strategies follow small constant scaling with respect to his-
tory length and enabling edge-friendly deployment. Experiments
on NuScenes datasets demonstrate that TinyBEV is comparable
with other state-of-the-art methods across diverse visual percep-
tion metrics with advantages in computational efficiency.

CCS Concepts

« Computing methodologies — Scene understanding.

Keywords
Birds’ Eye View, Efficient Al

ACM Reference Format:

Hongyu Ke'  Jack Morris! Yongkang Liu?  Satoshi Kitai >  Kentaro
Oguchi? ,YiDing! Haoxin Wang', 'Georgia State University, 2InfoTech
Labs, Toyota Motor North America R&D, {hke3, jmorris116, yiding, haoxin-
wang}@gsu.edu, {yongkang.liu, satoshi.kitai, kentaro.oguchi}@toyota.com
. 2025. TinyBEV: Compact Temporal Fusion for Multi-View 3D Percep-
tion. In The Tenth ACM/IEEE Symposium on Edge Computing (SEC °25),
December 3-6, 2025, Arlington, VA, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3769102.3774633

This work is licensed under a Creative Commons Attribution 4.0 International License.
SEC 25, Arlington, VA, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2238-7/2025/12

https://doi.org/10.1145/3769102.3774633

1 Introduction

The Bird’s-Eye-View (BEV) representation provides a unified view
of the world, which has become the standard in modern autonomous
systems [1, 5, 9, 34]. This representation is critical for downstream
tasks such as 3D object detection [8, 10, 12, 15-19, 32]. Recently,
generating BEV representation only from multi-view cameras has
made significant strides, largely attributed to Transformer-based
architectures [14, 20, 22, 31, 33] that leverage cross-attention to link
BEV queries with image features. Despite their effectiveness, the at-
tention mechanism in such models incurs quadratic computational
and memory complexity as the number of image tokens or BEV
queries grows. On the other hand, when dealing with real-world
scenarios that involve high-resolution inputs from multiple cam-
eras and frames, the quadratic computational complexity becomes
a major bottleneck, significantly limiting feasibility on resource
constrained automotive platforms [13, 26]. To address this, we re-
place the cross-attention used for constructing BEV features with
state space models (SSMs) [4] to retain long-range spatial context
with near-linear scaling, and we use a lightweight convolutional
recurrent module for temporal fusion to keep overhead modest.

State space models (SSMs)—especially Mamba, which introduced
the selective state space model (S6)—offer linear-time sequence
processing, achieving strong results in language [3, 23, 24] and in-
creasingly competitive performance in 2D vision [7, 21, 35] where
they approximate attention at much lower cost. These properties
make SSMs well suited for the spatial association between camera
features and the BEV grid, where sequences aggregated across mul-
tiple cameras can be very long. Following recent BEV work [12],
we therefore replace cross-attention with SSMs for spatial integra-
tion, retaining long-range dependencies while avoiding quadratic
growth.

Temporal structure is equally critical in driving scenes, and it
is essential to consider computational efficiency alongside con-
struction accuracy in mobile edge [11, 25, 27, 28]. Naive extensions
that appear across long frame stacks or concatenate many frames
along channels quickly degrade efficiency. Motivated by [6], we
favor lightweight convolutional recurrence in BEV space over cross-
frame attention. This enables linear scaling with history length,
which is essential for deployment on resource-constrained automo-
tive platforms.

2 Related Work

Temporal fusion. Temporal fusion is central to camera-only BEV
perception. Attention-based temporal fusion [18] lets current BEV
queries attend to an ego-aligned history. This approach enables
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Figure 1: Bottom: Multi-view images are encoded and aggregated into a BEV grid using an SSM-based spatial fusion module
that replaces Transformer cross-attention. Top: A parallel, attention-free temporal module augments each frame’s BEV with a
scalar timestamp 7;, applies a shared 1X1 encoder per frame, concatenates the encoded frames along channels, and performs
per-BEV-query pointwise fusion to obtain a temporally consistent BEV grid.

long-range reasoning, but incurs the quadratic cost in the number
of BEV queries and large attention maps. Other work such as [30]
warps historical BEV to the current frame, concatenates channels,
and fuses with residual convolutions. This avoids attention maps
and scales roughly linearly in queries and history, but couples
neighboring queries through spatial kernels and typically omits
explicit real-time spacing. VideoBEV [6] advocates simple BEV
space mixers over cross-frame attention to improve deployability. In
contrast, our module is parallel and attention-free. We additionally
put a scalar timestamp per frame to expose both order and real
time gaps, improving robustness to variable frame rates and multi-
camera asynchrony.

State Space Models (SSMs). SSMs have emerged as a compelling
alternative to Transformers, offering linear time complexity for se-
quence modeling. The Structured State Space Sequence (S4) model
was a foundational work, demonstrating that SSMs could effectively
capture long-range dependencies. A major advancement came with
Mamba, which introduced the selective state space model (S6).
Adapting these inherently 1D models to 2D vision tasks presents
challenges. Approaches like Vision Mamba (Vim) [35] and VMamba
[21] treat an image as a sequence of flattened patches. To preserve
spatial relationships, they often employ a multi-scan strategy, pro-
cessing the data multiple times with different flattening orders (e.g.,
row-wise and column-wise). The application of SSMs to BEV percep-
tion is a nascent but growing field. Recent works like MamBEV [12],
which replaces the standard cross-attention in Transformer-based
models with an SSM-based cross-attention module, retaining the
separate query-and-pull fusion paradigm but with linear complexity.
This supports us to implement the more efficient encoder/decoder
for BEV.

3 Method

3.1 Temporal Fusion

Temporal fusion aims to aggregate a sequence of BEV features
into a temporally consistent representation while respecting edge
constraints and multi-camera asynchrony. We adopt a parallel,
attention-free design that is highly parallelizable on modern hard-
ware and whose dominant compute/memory are decoupled from
the history length. Classical designs either (i) apply cross-frame
attention, which suffers from high computation complexity, or (ii)
maintain a recurrent hidden state, which is causal but less paral-
lel. We take a different route: a parallel, attention-free mixer that
(a) encodes each frame independently, (b) concatenates features
along the channel axis under a fixed budget, and (c) fuses per BEV
query using only pointwise operations. This yields high hardware
parallelism and keeps the dominant compute decoupled from the
number of history frames.

Let {Xt}tho be BEV feature maps produced by a shared BEV
encoder for the current frame ¢=0 and T historical frames:

X; € RBXCoerxHXW, Q = HW BEV queries per frame. (1)

To encode order and real time gaps, each frame receives a scalar
timestamp 7; = p t with p > 0, broadcast and concatenated as one
extra channel:

X; = Cat [Xt, Ttl] € RBX(CbeV+1)XHXW. (2)

A shared pointwise block processes each frame independently:

Z; = ¢(BN(W1 * )N(t)): €)



where Wy € RCbevX (CoevtD)X1X1 514 ¢ = ReLU. Then we concate-
nate all frames along the channel:

Z =Cat[Zy, ..., Zr] € RBXCearxHXW )

Temporal mixing at each BEV grid is then done by another pointwise
block:

U = g(BN(W, + 7)), )

where Wy € RCeatXCeaX1X1 Then follow a per-query projection
and LayerNorm:

U’ = Reshape(U) € RBXQxCeat,

(6)
Ypq = LN(U;  Wp),

where Wp € RCatXD |y ¢ RBXOXD Eqs (2)-(6) constitute a
single-pass, parallel, attention-free fusion; no recurrent state is
maintained.

BEV query view. Index a BEV query by q € {1,...,Q} and denote
the per-frame BEV grid feature by x; 4 € RS, With (2) and (3),

Yt.q = [xt.q5 7] € RCber*1,
Ztq = ¢(Wl3~ft,q) € Rcbev,

zqg = 20,45 -521,4] € RCeat,

Then (5) and (6) reduce to a per-query feed-forward mixer:

v = IN($(Wa 20) Wp). )

Thus, temporal fusion preserves per-query independence: the block
mixes time but not space.

Why time conditioning? The timestamp channel is crucial beyond
a mere positional tag.

(i) Order & spacing identifiability. Without 7;, frames differ only
by their block index inside z4, which encodes order but not phys-
ical spacing. Assume x; 4 evolves smoothly from a latent process
sampled at interval At; a first-order expansion gives

Oxq
Xt+5’q =~ xt’q + ? S. (8)

Changing FPS or encountering dropped/late frames alters § = At;
a mapping that depends only on block indices cannot re-scale its
response by At, yielding miscalibrated velocity/temporal geometry.
Providing 7; = pt exposes real time gaps, enabling the network
to learn functions that are (approximately) equivariant to time
rescalings t — at because 7 changes accordingly.

(ii) Breaking frame-exchange symmetry. Eq. (3) shares Wj across
t. Injecting 7; induces a time-gated affine encoder per BEV query,

ztq = YAx1g +b(12)), )

where b(7;) (realized via the extra channel and biases) adapts the
response by temporal position/spacing and stabilizes generalization
under variable history length T and non-uniform sampling.

(iii) Constructive cue. A prototypical temporal cue is a finite
difference normalized by elapsed time, (xl,q - xqu) /(11 — 19). With
7 present, the mixer in (5)—(6) can approximate such normalization
by (a) difference-like mixing across time-concatenated channels in
W, and (b) gain modulation as a (piecewise-linear) function of z;
without 7, the denominator is absent and the model overfits to a
single training interval.

Properties and discussion. Parallel & attention-free are inde-
pendent over frames and fuse the entire window in one pass via
pointwise mixing; no quadratic token-pair interactions occur. Per-
query locality: temporal mixing is applied independently to each
BEV query, decoupling temporal fusion from spatial resolution.
Fixed-budget behavior: the dominant computation depends on Cygta1,
aligning with edge deployment. Robustness to irregular sampling:
7; captures real time gaps, improving behavior under variable FPS,
asynchrony, and late/dropped frames. Practical notes: p may be set
to the camera sweep period (s/frame) or learned; variable T at test
time can be handled by zero-padding to a preset maximum or by
weight sharing with pooling before.

3.2 Spatial Fusion

Given multi-view image features, we seek to integrate them into
the BEV representation by replacing cross-attention with state space
models so that each BEV query can aggregate long-range, multi-view
signals with near-linear scaling. This follows recent evidence that
Mamba provides content-adaptive sequence mixing with linear-
time scans while remaining competitive with attention in accuracy
for vision tasks.

We replace cross-attention with a Spatial Cross Mamba (XQSSM)
[12] module that performs SSM-based cross-attention between BEV
queries and multi-view image features. For each BEV query ¢, we
generate a small set of reference points by lifting (x, y) to pillar sam-
ples (x,y, z) and projecting them onto each camera; only locations
inside the image are kept. We then interleave the corresponding
query copies and the sampled image features into a single 1D se-
quence and process it with Mamba kernel.

To ensure that BEV query tokens do not modify the SSM hidden
state during the scan, we gate the discretization step size by token
type. Let type(k) € {img, query} denote the k-th token’s type and
define:

A = Aimg > 0, type(k) = img,
0, type(k) = query.
With token-dependent selective parameters (Ag, Bg, C) = Yo (tx)

and zero-order-hold (ZOH) discretization, we have:

Ak = eAkAk, Bk = (Ak —I)AEIB](,

the discrete SSM update reads:

By = A b+ B te,  yg = Ci by

For query tokens we set Ay = 0, hence Ay = I and By = 0, which
generate the read-only property:

type(k) = query = hgyq =hg,  yr = Cg hi.

This allows BEV queries read from nearby image tokens at their
insertion indices, so that the interaction of two modalities follows
near-linear scaling.

This SSM-based cross-attention is hardware friendly and empiri-
cally competitive with Transformer counterparts, while improving
input-scaling efficiency.

4 Experiment

We follow the methodologies of the previous work of [18, 29] and
[30]. We evaluate on one backbones: ResNet50 which are pretrained



Figure 4: Visualization results of TinyBEV on nuScenes val set. We observe that our model can detect highly occluded objects.

on a depth prediction task and COCO. During training, the first 4.1 Dataset and Metrics
stage of the backbone is frozen, and all other stages are trained at
a 10% learning rate to fine-tune their latent representations to the
multi-view autonomous driving setting.

We evaluate on the nuScenes dataset [2], a large-scale multi-modal
autonomous driving benchmark comprising 1,000 urban driving



Method Backbone #Frames NDST mAPT mATE| mASE| mAOE| mAVE| mAAE|
BEVFormerV1-T ResNet50 3 0.354 0.252 0.900 0.294 0.655 0.657 0.216
BEVFormerV2-T*  ResNet50 3 0.397 0.270 0.820 0.301 0.594 0.469 0.195
MamBEV-T ResNet50 3 0.399 0.266 0.794 0.298 0.575 0.469 0.199
BEVDiffuser ResNet50 3 0.391 0.283 0.859 0.285 0.558 0.592 0.212
TinyBEV ResNet50 3 0.396 0.267 0.856 0.300 0.553 0.462 0.203

Table 1: Our main results for 3D detection on nuScenes val set. * indicates models are trained by us.

# Frames NDST mAPT mATE| mASE| mAOE| mAVE| mAAE| Params|MamBEV-T
3 0.396 0.267 0.856 0.300 0.553 0.462 0.203 39M  71IM
4 0.405 0.277 0.841 0.302 0.543 0.450 0.205 40M 96M
5 0.413 0.282 0.812 0.295 0.540 0.435 0.199 40M  128M
8 0.412 0.280 0.815 0.291 0.547 0.430 0.197 42M  266M

Table 2: Performance of our model across all metrics NDS of models on nuScenes validation set using different numbers of

temporal frames.

scenes recorded in Boston and Singapore. Each scene is approxi-
mately 20 seconds in duration. The key frames are annotated at
2Hz with 3D bounding boxes and attributes for 23 categories, of
which 10 constitute the official 3D detection benchmark. Each scene
is recorded with a 360° sensor suite—six cameras, five radars, and
one LiDAR—together with GPS/IMU and full calibration. The eval-
uation metrics and framework for computing them are provided
as part of the nuScenes devkit. The metrics used for evaluation
are 1) the mean average precision (mAP), which evaluates both
the localization and classification performance of the predicted
results over four different thresholds using center distance on the
ground plane, and five true-positive error metrics are reported for
matched detections: average translation error (ATE), average scale
error (ASE), average orientation error (AOE), average velocity error
(AVE), and average attribute error (AAE). The overall nuScenes De-
tection Score (NDS) aggregates mAP with the five mean TP metrics
to produce a single summary of both detection and box-quality
performance. In our method and experiments, only the camera
frames, sensor calibration data, and GPS data are used in making
predictions.

4.2 Implementation Details

We used a learning rate of 8 x 104, with a linear warmup for 10% of
the scheduled steps starting from % x 10~# Following the warmup,
the learning rate follows an epoch based cosine annealing schedule
with a minimum learning rate of 8 X 1077, We trained with an
effective batch size of 32 with no gradient accumulation on 2 Ada
6000 for 24 epochs. An exponential moving average according to
the function w; = (1-0.0002)w; +0.0002w is applied to all weights
starting from the beignning of training. An AdamW optimizer with
a 0.01 weight decay is used, and training employs an automatic
mixed precision optimizer wrapper with an initial gradient scaling
of 512. A 0.1 multiplier is applied to the learning rate of the backbone
weights and the deformable attention sampling offsets [36]. We train
the models from scratch using a randomly initialized network for
the encoder layers.

4.3 Main Results

We first report our main results, followed by a series of ablation
experiments designed to assess the contributions of individual
model components. Models in these experiments were trained for
24 epochs and employed a ResNet-50 backbone, pre-trained on the
COCO object detection dataset.

Main Results.We present a comparison of our results in Table
1 against state-of-the-art methods at compatible parameter and
image input scales. We only use camera features; additionally, we
do not make use of any auxiliary loss as in the works of Yang et al.
[30]. We aligned the definitions of tiny model with MamBEV-T. We
trained only the tiny version of our TinyBEV. Our TinyBEV model
has 39M parameters. For comparison, MamBEV’s tiny model has
71M parameters.

Effectiveness. Table 1 presents a comparison of our proposed
models with various state-of-the-art methods. Our TinyBEV has
comparable performance under similar conditions for the ResNet50
backbone. This demonstrates the effectiveness of our methods.

Efficiency. In table 2, we test the parameters when the tem-
poral information increases. We have consistently maintained a
significantly lower number of parameters than MamBEV-T. From
the result, increasing frames helps overall performance until ap-
proximately 5 frames. Unsurprisingly, the mAVE, a measurement
of velocity prediction error, is also significantly higher when we
increase the history frames. The total number of parameters scales
linearly with respect to the history frames.

5 Conclusion

We presented TinyBEV, a camera-only BEV perception framework
that replaces cross-attention with an SSM-based spatial encoder
and adopts a parallel, attention-free temporal fusion. Spatially, the
SSMs based method aggregates multi-view images for BEV query
without taking quadratic computation complexity. Temporally, we
have comparable performance with SOTA while having less and
stable parameters.



6 Limitations and Future Work

(L1) Diminishing returns with longer histories. As shown in Ta-
ble 2, increasing temporal information from 3—8 frames makes
NDS changes from 0.396—0.412 and even saturates several metrics.

(F1) Beyond spatial SSM: temporal and end-to-end SSMs. An ap-
pealing direction is to replace temporal fusion with state space
models: e.g., a causal, streaming Mamba that maintains a compact
BEV state with learned time gated updates. We leave these direc-
tions for future exploration.
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