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Abstract

Hardware-Aware Neural Architecture Search (HW-NAS) has
emerged as a powerful tool for designing efficient deep neural
networks (DNNs) tailored to edge devices. However, existing
methods remain largely impractical for real-world deploy-
ment due to their high time cost, extensive manual profiling,
and poor scalability across diverse hardware platforms with
complex, device-specific energy behavior.
In this paper, we present PlatformX, a fully automated

and transferable HW-NAS framework designed to overcome
these limitations. PlatformX integrates four key compo-
nents: (i) an energy-driven search space that expands conven-
tional NAS design by incorporating energy-critical configu-
rations, enabling exploration of high-efficiency architectures;
(ii) a transferable kernel-level energy predictor across devices
and incrementally refined with minimal on-device samples;
(iii) a Pareto-based multi-objective search algorithm that bal-
ances energy and accuracy to identify optimal trade-offs;
and (iv) a high-resolution runtime energy profiling system
that automates on-device power measurement using external
monitors without human intervention. We evaluate Plat-
formX across multiple mobile platforms, showing that it
significantly reduces search overhead while preserving accu-
racy and energy fidelity. It identifies models with up to 0.94
accuracy or as little as 0.16mJ per inference, both outperform-
ing MobileNet-V2 in accuracy and efficiency. Code and tuto-
rials are available at github.com/amai-gsu/PlatformX.
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1 Introduction

Hardware-Aware Neural Architecture Search (HW-NAS) has
emerged as a powerful paradigm for automatically design-
ing deep neural networks (DNNs) optimized for specific
hardware platforms [1–3]. However, applying NAS to build
energy-efficient models remains fundamentally challenging
for two reasons. First, NAS requires evaluating millions of
candidate architectures, making the process computation-
ally expensive and labor-intensive [4, 5] Second, accurate
energy-aware evaluation demands fine-grained power pro-
filing [6, 7], which is inherently device-dependent and of-
ten relies on external power monitors. This complexity is
particularly problematic for edge devices, where inference
completes in milliseconds. This reliance adds substantial
setup complexity and hinders the scalability of NAS pipelines
across heterogeneous edge platforms [8, 9].
Large-Scale Model Search Remains Costly and Manual. To

identify high-performingmodels, NASmust often explore ex-
tensive search spaces that capture a broad spectrum of archi-
tectural possibilities. While such expansiveness is essential
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for discovering competitive designs, it imposes steep compu-
tational costs and engineering overhead. Early NAS methods
based on reinforcement learning requires supercomputer-
scale budgets. The original NASNet [10, 11], for instance,
search consumes roughly 32,000 to 75,000 GPU-hours (equiv-
alent to running 450 GPUs for three to seven days) merely to
search on CIFAR-10 before even attempting transfer to larger
datasets like ImageNet. Evolutionary search algorithms push
the resource demands even higher. AmoebaNet-A [12] re-
ports 75,600 GPU-hours (3,150 GPU-days) to achieve com-
parable accuracy. In response to these expensive computa-
tional demands, weight-sharing techniques such as ENAS
[13, 14] has been proposed, which can reduce the search
cost to fewer than 16 GPU-hours on a single GTX 1080 Ti.
However, these methods require carefully tuned one-shot
supernets and compromise training fidelity, leading to sub-
optimal transferability across tasks and datasets. Moreover,
simply reducing the raw GPU-hours does not eliminate the
need for manual intervention. Instead, they shift it toward
the design of the supernet, the tuning of search algorithms,
and the adaptation to specific hardware platforms.

Platform-aware NAS methods introduce a new axis of com-
plexity. MnasNet [15], for instance, integrates real latency
measurements into its reward function, requiring over 40,000
GPU-hours and millions of device-side inference traces. This
is motivated by the observation that traditional proxies like
FLOPs and parameters often fail to accurately reflect real-
world latency behavior. ProxylessNAS [16, 17] mitigates this
by training latency predictors to guide the search process,
reducing the compute cost to approximately 200 GPU-hours.
However, these predictors must be retrained and revalidated
whenever the target hardware or firmware changes, limiting
their robustness in dynamic or heterogeneous deployment
settings. More recent frameworks, such as Once-for-All [18],
Pi-NAS [19], and CE-NAS [20], further amortise search cost
across tasks, but they still depend on high-quality device
profiling to avoid accuracy and energy regressions.
Accurate Energy Profiling Requires Intrusive Instrumen-

tation. Energy profiling [21–23] is essential for designing
energy-efficient models, as developers must understand real
power consumption before optimization. On mobile and em-
bedded platforms, fine-grained power measurements typ-
ically require external instrumentation, such as Monsoon
PowerMonitor, which replaces battery leads on smartphones.
These methods often involve hardware modifications, phys-
ical access to power rails, and custom scripts for stream-
ing voltage and current samples [24]. To avoid invasive se-
tups, many studies rely instead on easily obtainable proxy
metrics [25], such as FLOPs [26], latency [27], or hardware
performance counters [28]. However, these proxies often
show weak correlation with actual energy consumption, es-
pecially on modern platforms that feature Dynamic Voltage

and Frequency Scaling (DVFS), shared memory bandwidth,
and runtime kernel fusion [9, 29]. Consequently, they fail
to capture critical system-level effects like thermal throt-
tling, cache contention, and kernel fusion. Frameworks that
include power measurement in the loop often suffer from
coarse temporal resolution and limited automation. For in-
stance, KNAS records board-level average power once per
inference batch and requires manual triggering by an engi-
neer for each run. These limitations make existing power
profiling workflows unsuitable for scalable or real-time NAS
scenarios, where evaluating millions of model candidates
demands high-throughput, fully automated pipelines.
To this end, we propose PlatformX, a fully automated,

end-to-endHW-NAS framework designed to optimize energy-
efficient models for diverse edge platforms. PlatformX inte-
grates model search, deployment, runtime measurement, and
adaptive optimization into a unified and scalable pipeline. It
consists of four core components:

• Energy Efficiency-driven Search Space. We extend
conventional NAS search spaces, which often prioritize
accuracy alone, by incorporating energy-critical archi-
tectural configurations, such as kernel sizes, channel
dimensions, and stride. This expanded design space
promotes the exploration of architectures that that
balance accuracy with improved energy efficiency.

• Transferable Kernel-level Energy Prediction. In-
stead of retraining a new energy predictor for each
target device, PlatformX introduces a transferable
kernel-level energy prediction framework that gener-
alizes across devices. The predictor is initialized from
prior measurements and fine-tuned using a small num-
ber of device-specific samples, substantially reducing
profiling overhead when adapting to new hardware.
To the best of our knowledge, PlatformX represents
the first transferable kernel-level energy prediction
design for edge devices.

• Multi-objective Optimization for Model Search.

We formulate HW-NAS as a multi-objective optimiza-
tion problem jointly optimizing accuracy and energy
consumption. A gradient-based Pareto search algo-
rithm guides the exploration toward the Pareto fron-
tier, guaranteeing that the selected architectures rep-
resent true optimal trade-offs. The search operates in
an iterative, measurement-driven loop, continuously
refined with real-device feedback so that the result-
ing architectures capture genuine hardware behavior
rather than relying on proxy metrics.

• Automated Model Runtime Performance Profil-

ing. PlatformX integrates a high-resolution, fully
automated energy profiling pipeline that measures
inference-time power using external monitoring tools.
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The profiling system operates without human inter-
vention and is tightly coupled with the search and
prediction modules, enabling real-time feedback and
iterative model refinement. While most existing HW-
NAS approaches target datacenter GPUs or server
environments, PlatformX is explicitly designed and
validated for resource-constrained edge devices (e.g.,
smartphones, Jetson), where millisecond-level profil-
ing accuracy and energy efficiency are critical.

Unlike prior HW-NAS systems that rely on coarse analyt-
ical proxies or labor-intensive profiling, PlatformX closes
the loop with millisecond-resolution, on-device energy feed-
back, enabling robust and deployable model selection. As
shown in Table 1, PlatformX achieves the lowest total
search cost while offering the highest profiling granular-
ity among representative HW-NAS systems. Specifically,
PlatformX completes the full search in only 7 GPU-days,
more than 400× faster than NASNet-A (3,150 GPU-days) and
nearly 10× faster than TEA-DNN (9.7 days), despite operat-
ing over a much larger search space (9.6 × 105 vs. 2 × 104
models). Moreover, unlike prior methods that measure only
coarse model-level or proxy metrics, PlatformX performs
kernel-level, millisecond-scale energy profiling with full au-
tomation and real on-device measurements—capabilities not
supported by NASNet-A, TEA-DNN, BRP-NAS, or MnasNet.
This combination of fine-grained measurement fidelity, end-
to-end automation, and real-device validation enables Plat-
formX to significantly reduce search time while maintaining
hardware-accurate energy estimation, demonstrating both
scalability and practical deployability across edge platforms.
We evaluate PlatformX across a range of mobile and

embedded devices, including both CPU- and GPU-based plat-
forms. Results demonstrate that PlatformX consistently
achieves high energy prediction accuracy with minimal cal-
ibration, identifies models with optimal energy–accuracy
trade-offs, and reduces profiling overhead by an order of
magnitude compared with state-of-the-art alternatives. In
summary, PlatformX bridges the gap between scalable neu-
ral architecture search and practical energy-aware optimiza-
tion. By unifying adaptive prediction, fully automated pro-
filing, and Pareto-based search, it provides an effective and
deployable solution for designing high-performance, energy-
efficient models for edge deployment.

2 Background and Motivation

2.1 Bottlenecks to Energy-Efficient

HW-NAS

HW-NAS offers a principled route to energy-efficient models
on resource-constrained edge devices. Its practical deploy-
ment, however, is curtailed by three interrelated bottlenecks.

Bottleneck 1 - Escalating evaluation cost. The domi-
nant obstacle to deployable energy-efficient HW-NAS is the
sheer cost of evaluation. Each surviving candidate architec-
ture must (i) be partially or fully trained to obtain a statis-
tically meaningful accuracy estimate, (ii) undergo repeated
inference runs to measure latency under realistic batch sizes
and DVFS settings, and (iii) be profiled at millisecond resolu-
tion to capture power and energy behavior on edge devices.
These stages incur substantial GPU hours, prolonged device
occupation, and significant engineering overhead. Critically,
evaluation time has not scaled down in proportion to the
rapid expansion of NAS search spaces. The field has evolved
from NASNet-A’s 2×104 candidates to TEA-DNN’s 5.6×1014
alternatives—an increase of ten orders of magnitude—yet
per-model evaluation remains prohibitively expensive. TEA-
DNN still allocates roughly 25min of training and 10min
of high-frequency power tracing per candidate; evaluating
just 400 filtered models therefore consumes about 9.7 GPU-
days on a single V100 GPU. BRP-NAS demonstrates an even
steeper trend: its breadth-first progressive pruning evalu-
ates 107 architectures, monopolizing a 112-GPU cluster for
60 consecutive days before the Pareto set stabilizes. These
data reveal a super-linear scaling law: once per-architecture
evaluation exceeds a few minutes, even moderate increases
in search-space cardinality inflate total wall-clock time by
orders of magnitude, rendering exhaustive exploration infea-
sible. Consequently, reducing the evaluation budget without
sacrificing the discovery of promising architectures remains
the key bottleneck for scalable and sustainable HW-NAS.

Bottleneck 2 - Inefficientmulti-objective exploration.

Once the per-candidate cost is contained, search strategy it-
self becomes the limitations for energy-efficient HW-NAS.
An effective algorithm should identify promising architec-
tures under multiple conflicting objectives (accuracy, latency,
energy) before expensive evaluation begins, otherwise the
search still degenerates into a prohibitively large test-and-
discard loop. Current practice remains largely accuracy-
centric. The originalMnasNet controller drew a reinforcement-
learning policy over 8,000 candidates, but 98% were thrown
away once the on-device latency constraint was enforced,
dissipating nearly all of the optimization effort on infeasi-
ble designs. ProxylessNAS replaced explicit measurements
with a differentiable latency estimator and trimmed the raw
compute budget to 200 GPU hours; yet when energy was
added as a third objective, hundreds of latency-compliant
architectures were still discarded because they violated the
energy bound. These case studies illustrate a fundamental in-
efficiency: sequentially optimizing one objective and filtering
on the others yields a combinatorial explosion in wasted tri-
als as soon as a newmetric is introduced.Without an efficient
multi-objective mechanism that steers the search directly
toward the direction, the number of rejected architectures
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Table 1: Comparison of evaluation costs and profiling capabilities across representative HW-NAS systems. Only

PlatformX supports fine-grained energy measurement, full automation, and real on-device profiling, significantly

reducing search cost.

Method Search Space Size Objectives Wall-clock Time # Models Profiled Energy Granularity Auto Search On-device

PlatformX (Ours) 9.6 × 105 Accuracy, Latency, Energy 7 GPU-days 170 Kernel-level (ms) ✓ Full loop ✓
NASNet-A [10] 2 × 104 Accuracy 3,150 GPU-days 20,000 ✗ ✗ ✗
TEA-DNN [30] 5.6 × 1014 Accuracy, Energy 9.7 days 400 Model-level (s) ✗ ✗
BRP-NAS [31] 107 Accuracy, Latency up to 60 days — ✗ ✗ ✗
MnasNet [15] 8 × 103 Accuracy, Latency 4.5 days 8,000 ✗ ✗ ✓

and the associated computational cost escalate super-linearly
with each additional design constraint.

Bottleneck 3 - Scarcity of cross-device, high-resolution

energy profiling. Inference on edge devices is bursty and
short-lived [32–34]; individual kernels often finish within
milliseconds. Capturing energy at a matching granularity is
therefore essential, because coarse or perturbed traces ob-
scure true power behaviour and mislead hardware-aware
search. Unfortunately, system-level counters such as An-
droid BatteryStats and nvidia-smi update at sub-hertz
rates and miss these events entirely. Although instrument-
ing privileged kernel hooks can raise the sampling rate, the
additional interrupts disturb DVFS governors, pre-empt user
tasks, and contaminate the very measurements they aim to
record. Consequently, most HW-NAS studies resort to ex-
ternal instrumentation. TEA-DNN couples the target phone
to a 1 kHz USB power meter, yet publishes only an aver-
age joule per model number, forfeiting kernel-level insight.
MCUNet adds a shunt resistor and INA226 sensor to every
micro-controller board; soldering, gain calibration, and tem-
perature stabilisation require 1 to 2 hours per device. External
monitors such as the Monsoon Power Monitor are a another
common way to obtain high-granularity energy data with-
out adding runtime overhead to the mobile device. However,
setting up the monitor requires disassembling the phone to
remove the battery, based on our experience, preparation
and voltage calibration take about two hours per device and
void the hardware warranty. The need for labour-intensive,
platform-specific measurement pipelines severely limits the
volume and diversity of energy data available for HW-NAS.
Without an automated, high-resolution, and broadly transfer-
able profiling method, it is impossible to scale energy-aware
search across the heterogeneous of modern edge hardware.

2.2 Design Opportunities

Addressing the three bottlenecks demands an end-to-end
strategy that unifies efficient screening, multi-objective ex-
ploration, and autonomous, high-fidelity measurement. First,
an energy-aware search space, coupled with transferable
energy predictors, must prune the evaluation pipeline and

guide the search toward low-power solutions. With accu-
rate kernel-level estimates available up front, only a small,
high-quality subset of architectures proceeds to full train-
ing and on-device profiling. Second, the search algorithm
must evaluate accuracy, latency, and energy from outset. By
expressing HW-NAS as a continuous multi-objective opti-
misation problem that quantifies trade-offs in real time, the
search concentrates on architectures that promise the best
overall balance, thereby eliminating superfluous model eval-
uations and saving compute resources. Finally, reliable, high-
granularity energy profiling without human intervention is
essential. An automated pipeline that streams millisecond-
resolution traces delivers trustworthy energy labels across
heterogeneous hardware while avoiding the hours of manual
setup that currently hinder large-scale experimentation. By
integrating these elements, a HW-NAS framework can cut
wall-clock search time by an order of magnitude, scale to
trillions of candidate networks, and remain portable across
the rapidly evolving landscape of edge devices.

3 System Design

The observations in Section 2 motivate the design of Plat-
formX, a fully automated system designed to enable scalable
and energy-aware neural architecture search across diverse
edge platforms. As illustrated in Fig. 1, the system integrates
four core components: energy efficient search space gener-
ation, kernel-level energy prediction, Pareto-based model
search, and automated runtime measurement into a stream-
lined. The entire process is self-updating and requires no
manual intervention. Given a foundational NAS search space,
PlatformX automatically outputs energy-efficient models
optimized for the target hardware.
The system begins by constructing an energy-efficiency

driven search space (§3.1) that encodes architectural factors
known to influence energy consumption. In contrast to con-
ventional NAS spaces focused solely on accuracy or latency,
PlatformX explicitly includes energy-relevant attributes
such as kernel size, input/output channel dimensions, and
stride. These design parameters are chosen based on their
strong empirical correlation with energy usage, as deter-
mined through prior profiling across multiple platforms.
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Figure 1: System overview of PlatformX, an automated platform for energy-efficient NAS. It integrates energy-

efficiency driven search space generation, transferable energy prediction, Pareto-based model search, automated

on-device energy profiling.

Each candidate model in the search space is then evalu-
ated using a Transferable Kernel-level energy predictors (§3.2),
which estimates energy consumption without requiring full-
model deployment. This predictor is trained using individual
kernel configurations, represented by their operator type
along with associated structural parameters such as con-
volution kernel size, input channels, and output channels.
By focusing on the kernel level, the predictor captures en-
ergy behavior that is more consistent across different models
and hardware platforms compared to full-network profiling.
This modular design enables efficient and accurate energy
estimation while maintaining generalization across diverse
architectures. As new measurements are collected from real-
device executions, the predictor is incrementally updated to
better reflect hardware-specific energy characteristics.
To efficiently explore the search space, PlatformX em-

ploys a Pareto-basedmulti-objectivemodel search (§3.3). Rather
than treating energy as a hard constraint or combining it
with accuracy via scalarization, the system identifies models
that lie near the Pareto front. This approach prioritizes ar-
chitectures that offer the best trade-offs between accuracy
and energy consumption. In each iteration, a small num-
ber of promising models are selected for actual deployment,
guided by the gradients that inform beneficial search direc-
tions. Once models are selected, they are deployed to the tar-
get edge platform for direct evaluation using the automated
model runtime profiling (§3.4) subsystem. This module in-
cludes a power monitor connected to the device’s power rails

and a benchmark execution script that performs inference on
the selected model. During inference, high-frequency energy
samples are recorded and aligned with operator execution
traces to compute total energy consumption with fine tem-
poral resolution. The results of this measurement are used to
validate the predictor’s estimates and to log true performance
metrics for each candidate. Finally, the system uses the real
measurements to update the predictor and search process.
Kernel configurations extracted from the evaluated models
are re-profiled individually if their energy prediction errors
exceed a threshold. These measurements are appended to
the predictor’s training data, and the predictor is retrained to
reflect the updated hardware behavior. The new predictions
are then propagated across the entire search space, ensuring
that subsequent candidate selection is based on the most
accurate available estimates.
Through these components, PlatformX forms a tightly

integrated, self-correcting pipeline for hardware-aware NAS.
It drastically reduces the need for manual profiling, avoids
exhaustive search, and adapts to different edge devices with
minimal per-device calibration. This design enables fast, ac-
curate, and energy-efficient model discovery suitable for
real-world deployment across heterogeneous platforms.

3.1 Energy Efficiency-driven Search Space

PlatformX expands conventional NAS search spaces to
prioritize energy efficiency, addressing the limitations of
accuracy-centric designs. As a foundation, we build upon
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NAS-Bench-201 [35], a widely used cell-based architecture
benchmark composed of three stacked cell groups connected
via residual blocks. Each stack contains five repeated cells
(𝑁 = 5), with each cell represented as a densely-connected di-
rected acyclic graph (DAG) of four nodes. The original search
space includes five operation candidates: zeroize, skip con-
nection, 1x1 convolution, 3x3 convolution, and 3x3 average
pooling, yielding a total of 56 = 15,625 unique architectures.
However, NAS-Bench-201 fixes several architectural pa-

rameters, limiting its utility for energy-aware design. For
instance, the input and output channel sizes (𝐶𝑖𝑛,𝐶𝑜𝑢𝑡 ), stride
(𝑆), and kernel size (𝐾𝑆) are statically set—e.g., 𝐶𝑜𝑢𝑡 is fixed
at 16, 32, and 64 across the three stacks, and 𝐾𝑆 is limited
to 1 or 3. Prior work [6] has shown that such architectural
configurations have a strong influence on energy consump-
tion, making rigid parameterization suboptimal for practical
deployment on energy-constrained edge devices.
To address this, PlatformX systematically expands the

search space by relaxing key architectural constraints, as
summarized in Table 2. This includes a broader range of
output channels, additional kernel sizes, and variable stride
values. Although this expansion theoretically yields over one
million candidate models, many configurations are invalid
due to shape mismatches, unsupported operations, or compi-
lation failures. To ensure executable candidates, PlatformX
performs rigorous validation, including shape compatibil-
ity checks and TFLite-based compilation filtering, resulting
in a curated and executable pool of 959,417 valid models.
Exhaustive search over this large space is computationally
impractical. Profiling every valid model on a single device
would take more than eight years of continuous testing,
as reported in prior work. To make this process tractable,
PlatformX incorporates two fast and scalable estimation
strategies. First, it uses our pre-trained kernel-level energy
predictor, which is introduced in the following subsection
(3.2), and estimates energy consumption based on opera-
tor configurations without requiring full-model deployment.
Second, it employs a zero-cost proxy for accuracy estima-
tion, following the approach proposed in NASWOT [36]. By
combining these two estimators, the system reduces the eval-
uation time to approximately 85 milliseconds per model. In
contrast, conventional approaches that involve full training
and power measurement typically require over 1.2 hours per
model. This improvement makes it feasible to explore the
expanded search space efficiently and at scale.

3.2 Transferable Kernel-Level Energy

Predictors

Efficient energy estimation is critical in the early stages of
the NAS pipeline. Reliable predictions enable PlatformX to
identify promising model candidates, filter out low-potential

Table 2: Convolutional layer configuration: original vs.

expanded

Configuration Original Space Expanded Space
Initial Input Channels 16 16
Output Channels 16, 32, 64 1-10, 16, 32, 64, 128, 256
Kernel Size 1, 3 1, 3, 5, 7
Stride 1 1, 2

designs, and significantly reduce overall search cost. How-
ever, constructing predictors that generalize across hetero-
geneous hardware platforms remains a key challenge.
To address this, PlatformX adopts a strategy inspired

by LitePred, beginning with synthetic data generation using
a variational autoencoder (VAE). For each kernel, the VAE
produces 1,000 configurations. These configurations are in-
stantiated as micro-benchmarks and executed on both the
CPU and GPU of the target device. Each run captures the
tensor shape (𝐻 ×𝑊 ), input channels (Cin), output channels
(Cout), kernel size (KS), stride (𝑠), and the energy consump-
tion measured in joules using an external power monitor.
The resulting traces are used to train a compact multilayer
perceptron (MLP), which serves as the base energy predictor.
When PlatformX is deployed on a new hardware plat-

form, the base predictor may no longer yield accurate esti-
mates due to variations in DVFS, cache hierarchy, and power
management policies. Instead of collecting millions of new
samples for each target device, the system performs light-
weight few-shot calibration. Specifically, it profiles only 50 to
100 representative kernels on the new hardware, compares
the observed energy values with predictions, and selects the
base predictor with the smallest Kullback-Leibler divergence.
This selected model is then fine-tuned using the small set
of newly acquired samples. Calibration effort is prioritised
where it matters most. Empirical profiling shows that the
convolutional patterns conv+bn+relu and dwconv+bn+relu
account for 93.97% and 87.74% of total energy on mobile
CPUs and GPUs, respectively, and that kernel size dominates
energy cost owing to its quadratic relationship with compute
complexity. PlatformX therefore allocates a larger share of
its calibration budget to these operators and to configura-
tions with diverse kernel sizes, while spending fewer samples
on parameters (e.g., channel widths, stride) whose effects
scale nearly linearly.
This targeted calibration approach enables the construc-

tion of accurate, device-specific energy predictors using only
a fraction of the data required by traditional profiling meth-
ods. It provides a scalable and adaptive foundation for energy
estimation in cross-platform NAS.
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3.3 Pareto-based Multi-Objective Model

Search

With energy and accuracy estimates available, PlatformX
formulates model exploration as a multi-objective optimiza-
tion problem [37]. The goal is to discover models that mini-
mize energy consumption while maintaining high accuracy:

min 𝐹 (𝑥) = (𝑓1 (𝑥), 𝑓2 (𝑥), ..., 𝑓𝑚 (𝑥)), 𝑥 ∈ Ω, (1)
where 𝑥 is a DNN model from the search space Ω, and each
objective 𝑓𝑖 (𝑥) represents a quantity to minimize—here, es-
timated energy 𝐶𝑝 and NASWOT score 𝑁𝑠 (as a proxy for
accuracy). Model 𝑥1 is said to Pareto dominate 𝑥2 (denoted
𝑥1 ≺ 𝑥2) if: {∀𝑖, 𝑓𝑖 (𝑥1) ≤ 𝑓𝑖 (𝑥2);

∃ 𝑗, 𝑓𝑗 (𝑥1) < 𝑓𝑗 (𝑥2).
(2)

The Pareto front [38] P contains all such non-dominated
models. To efficiently traverse this front, PlatformX applies
a gradient-descent-based sampling strategy. Rather than eval-
uating all models, the system selectively refines regions of the
search space where trade-offs between accuracy and energy
are promising. In each iteration, a small batch of models on
or near the current Pareto frontier is selected and deployed
to the target device. Real energy measurements are collected
and used to validate predictions, refine the Pareto front, and
update the predictor if necessary. This targeted exploration
maximizes discovery efficiency, ensuring that only the most
promising architectures are evaluated and improved upon.
PlatformX incorporates real-world sustainability con-

straints into model search by minimizing energy consump-
tion alongside maintaining high accuracy. To align the op-
timization objectives, we normalize energy and accuracy
estimates prior to search. Energy consumption 𝐶𝑝 is nor-
malized using Min-Max scaling, and the NASWOT-based
accuracy score 𝑁𝑠 is log-normalized:

𝐶𝑝norm =
𝐶𝑝 −min(𝐶𝑝 )

max(𝐶𝑝 ) −min(𝐶𝑝 )
,

𝑁𝑠norm = log(𝑁𝑠 ).
(3)

Initial Model Sampling for Pareto Front. PlatformX
begins by sampling 𝑘 diverse candidate models based on
the distribution of normalized 𝐶𝑝 and 𝑁𝑠 . These models are
trained to determine real accuracy and measured on-device
for actual energy usage, forming an initial Pareto front.
Iterative Pareto Front Updating for Model Search.

To refine the Pareto frontier iteratively, PlatformX uses a
multi-objective gradient descent (MGD) strategy. Let 𝑔𝑖 (𝑥)
denote the gradient of the 𝑖-th objective for model 𝑥 , the
optimal gradient direction 𝑔∗ (𝑥) is calculated as:

𝑔∗ (𝑥) ∝
𝑚∑︁
𝑖=1

𝜆∗𝑖 (𝑥)𝑔𝑖 (𝑥), (4)

Algorithm 1 Pareto Optimization with Gradient-Guided
Sampling

Input: Normalized energy 𝐶𝑝 (𝑥), accuracy 𝑁𝑠 (𝑥)
1: Sample 𝑘 initial models from search space X
2: Train and measure real energy/accuracy for these 𝑘 mod-

els
3: Build initial Pareto front P0
4: Compute initial gradient direction 𝑔∗ (𝑥)0
5: while no 𝑥 ∈ P satisfies the constraints do
6: Select𝑚 models most aligned with 𝑔∗ (𝑥)
7: Measure new models and update P
8: Recompute 𝑔∗ (𝑥)
9: end while

Output: Final Pareto front P∗

where {𝜆∗𝑖 (𝑥)}𝑚𝑖=1 solve:

min
{𝜆𝑖 }






 𝑚∑︁
𝑖=1

𝜆𝑖𝑔𝑖 (𝑥)





 s.t.

𝑚∑︁
𝑖=1

𝜆𝑖 = 1, 𝜆𝑖 ≥ 0. (5)

New candidates are selected based on the alignment between
their gradient 𝑔(𝑥) and the optimal direction 𝑔∗ (𝑥), using
the inner product as a similarity measure. In each iteration,
the top-𝑚 aligned models are evaluated on the target hard-
ware, and the Pareto front is updated. This process repeats
until a model satisfies the predefined constraints. To enable
scenario-specific tuning, we introduce weighting coefficients
𝑤𝑠∗𝑖 (𝑥) for each objective, which scale 𝜆∗𝑖 to bias the search.
For example, higher𝑤𝑠energy emphasizes low-power models.
Algorithm 1 summarizes the Pareto optimization process.

Target Model Selection. Once the Pareto front is stabi-
lized, PlatformX identifies the best trade-off model using a
weighted gradient descent approach. The best model 𝑥∗ is
chosen to have the smallest weighted gradient norm, allow-
ing tunable preference toward accuracy or energy objectives:

Select 𝑥∗ = argmin
𝑥∈P






∑︁
𝑖

𝑤𝑑𝑖 · 𝑔𝑖 (𝑥)





 . (6)

Algorithm 2 outlines the model selection process. This dy-
namic adjustment makes PlatformX capable of optimizing
models not only for performance but also for real-world
sustainability targets across heterogeneous hardware.

3.4 Automated Model Runtime Profiling

As discussed in §3.3, iterative refinement of the Pareto front
in PlatformX relies on accurate, on-device energy mea-
surements and model accuracy evaluations. To address this,
PlatformX incorporates an external high-resolution power
monitor, enabling automated profiling and reducing reliance
on manual instrumentation, which is often time-consuming
and error-prone.
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Algorithm 2 Gradient-Based Selection of Optimal Model
1: Input: Pareto front P, weights𝑤𝑑𝑖
2: Initialize 𝑥∗ = ∅, min _𝑔𝑟𝑎𝑑 = ∞
3: for each 𝑥 ∈ P do

4: Compute gradients 𝑔𝑖 (𝑥) and weighted 𝑔𝑤
𝑖

= 𝑤𝑑𝑖 ·
𝑔𝑖 (𝑥)

5: Calculate magnitude ∥𝑔𝑤 (𝑥)∥
6: if ∥𝑔𝑤 (𝑥)∥ < min _𝑔𝑟𝑎𝑑 then

7: Update 𝑥∗ = 𝑥
8: end if

9: end for

10: Output: Best model 𝑥∗

During the evaluation phase, model inference runs on
the edge device while the external power monitor continu-
ously samples power data. Each inference invocation records
its start and end timestamps, 𝑇𝑠 and 𝑇𝑒 , on the edge device.
Meanwhile, the power monitor samples electrical current
and voltage at high frequency, each tagged with a times-
tamp 𝑇𝑚 . However, aligning 𝑇𝑠 and 𝑇𝑒 with the timestamps
of the power monitor (𝑇𝑚) poses synchronization challenges.
Although both the edge device and the monitor are syn-
chronized to the host machine, clock drift and latency varia-
tions across models make static sampling windows unreli-
able. To ensure accurate measurement, PlatformX adopts
an event-based synchronization strategy. Inference start and
stop events trigger and terminate the power data capture pro-
cess, ensuring that power samples comprehensively cover
the model inference duration. From the sampled data, Plat-
formX identifies the corresponding power samples between
𝑇𝑠 and 𝑇𝑒 , computes the average current and voltage, and
calculates the average power and total energy using:

𝑃 = 𝐼 ·𝑉 , 𝐸 = 𝑃 · (𝑇𝑒 −𝑇𝑠 ).

Formodel accuracy evaluation, PlatformXperforms train-
ing and validation on the host server using task-specific
datasets, such as CIFAR-10 [39]. This approach ensures that
energy measurements and accuracy assessments are both
robust and scalable across large candidate sets.

4 System Implementation

PlatformX is a fully automated hardware-software co-design
platform built from four physical elements: a GPU server,
an Android device, a high-frequency power monitor, and
a dedicated Wi-Fi router. The components work in concert
to generate candidate networks, deploy them, capture fine-
grained power traces, and drive multi-objective optimization.

Power Monitor

Wi-Fi Router

Mobile Device

GPU Server

Power Supply & Power 

Measurement

Control & Power Data 

Collection

U
S

B

W
i-F

i
Control & Inference Latency 
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1. Search Space Generation

2. Pareto-based Model Search

3. Model Training

4. Energy Calculation

1. Power Supply to Mobile Device

2. Power Measurement

1. Model Execution

2. Latency Benchmark Running

Figure 2: Platform setup and the functional allocation

of Platform X.

4.1 PlatformX Platform Setup

The Platform setup of Platform X is illustrated in Fig. 2.
There are four hardware used in the platform, GPU server,
mobile device, Power monitor, and Wi-Fi router.

GPUhost server.The server orchestrates the entire search
loop. It generates architectures, runs kernel-level energy and
accuracy predictors, trains selected models, and converts
them to TensorFlow-Lite format. All logs and measurement
results are archived locally to support iterative optimisa-
tion. An NVIDIA RTX 4090 GPU provides training through-
put and establishes ground-truth accuracy. The server also
synchronises benchmark execution and data collection by
communicating with both the phone and the power meter.
Mobile device. Deployments target a Android device

equipped with an ARM CPU and a Mali GPU. To obtain un-
contaminated power readings the internal battery is removed
and the phone is powered directly from the external monitor,
avoiding USB-charging artefacts. Models are pushed over
Wi-Fi and executed with the TensorFlow-Lite benchmark
tool [40]; ADB carries control commands and log files. For
reproducibility we minimise screen brightness, disable adap-
tive settings, and stop all background services and radios.

Powermonitor.AMonsoon Power Monitor [41] samples
voltage and current at 5kHz, capturing the sub-millisecond
energy fluctuations typical of edge inference. Compared with
software counters, the Monsoon delivers hardware-level ac-
curacy for power and cumulative joule counts.

Wi-Fi router. A dedicated router isolates traffic between
server and handset, eliminating congestion that could other-
wise skew deployment latency or trigger timing.

4.2 Timing Synchronization Between Edge

Device and Meter.

Model inference occurs on the phone, whereas power is sam-
pled by the Monsoon; aligning the two timelines is essential.
As Fig. 3 shows, the handset records a start time 𝑇𝑠 and end
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Figure 3: Timing sync between edge device and external

power monitor.

time 𝑇𝑒 for each inference. Concurrently, the monitor emits
timestamped samples ⟨𝑇𝑚, 𝐼 , 𝑉 ⟩ at a fixed rate. Even with
a shared clock, drift can accumulate during long runs, and
inference latency varies from model to model, so a fixed
sampling window is unsafe.
PlatformX therefore drives the meter with two explicit

triggers: an inference-start event that begins power capture
and an inference-stop event that ends it. Using𝑇𝑠 as an anchor,
the system selects the first power sample whose timestamp
exceeds 𝑇𝑠 and then all subsequent samples up to 𝑇𝑒 , guar-
anteeing full coverage of the execution interval. Average
current and voltage are computed from this slice; multiply-
ing by latency yields average power and total energy.
This automated workflow eliminates manual instrumen-

tation, provides high-resolution ground truth, and feeds the
adaptive search loop without human intervention.

5 Evaluation

5.1 Experiment Setup

We conduct experiments on three widely used NAS bench-
marks: NAS-Bench-201, NDS-ENAS, and NDS-DARTS [42],
and deploy the searched networks on three commercial mo-
bile devices; each device is evaluated on both its CPU and
GPU, with specifications given in Table 3. Our evaluation fol-
lows four steps. We first confirm that the energy efficiency-
driven search space genuinely concentrates architectures
with favourable energy-accuracy trade-offs. We then mea-
sure how accurately the kernel-level energy predictors trans-
fer to each new device and how much calibration data they
require. Next, we trace the behaviour of the Pareto-based
search procedure described in Algorithm 1 and the subse-
quent model-selection rule in Algorithm 2.

Table 3: CPU and GPU Specifications of Selected Edge

Devices

Model CPU (Cores & Freq) GPU Vendor

Pixel 8 Pro 1×X3 + 4×A715 + 4xA510 @ 3GHz G715s Google
Pixel 7 2×X1 + 2×A78 + 4xA55 @ 2.85GHz G710 Google
Android Device-3 2×A76 + 2×A76 + 4xA55 @ 2.86GHz Mali-G76 –

5.2 Energy Efficiency-driven Search Space

Design

We first generate model variants based on three foundational
NAS search space. In total, 959,417 valid models are gener-
ated for NAS-Bench-201. Similarly, we extend the search
spaces of NDS-DARTS and NDS-ENAS from 5,000 to 136,391
and 130,549 valid models, respectively. We demonstrate how
the model variant generation effectively increases the like-
lihood of discovering energy-efficient models. We estimate
the energy consumption and accuracy of all models using
kernel-level energy predictors trained on Android Device-3
and NASWOT scoring.
Fig. 4 and Fig. 5 show the energy distributions of mod-

els in the original and in the extended search spaces.The
extended space covers a much broader energy range, con-
taining both higher- and lower-consumption architectures
than the baseline. This wider spread indicates richer opportu-
nities to locate highly energy-efficient models. For Fig. 6 and
Fig. 7. We compared the predicted energy consumption and
NASWOT Score of all the original architectures from NAS-
Bench-201, NDS-DARTS and NDS-ENAS with our optimized
models. For each original architecture, we selected an opti-
mized model that maintained similar NASWOT score to its
original counterpart but consumed latest energy. Blue points
are original models , green points are optimized models. The
points near the lower right corner represent the models that
achieve a better balance between accuracy and energy cost.
Overall, For NAS-Bench-201, the average NASWOT Score of
our optimized models increased 6.3% compared with origi-
nal models, the average energy consumption decreased 72%.
For NDS-DARTS, the average NASWOT score of our opti-
mized models increased 3.7% compared with original models,
the average energy consumption decreased 24.8%. For NDS-
ENAS, the average NASWOT score of our optimized models
increased 4.5% compared with original models, the average
energy consumption decreased 17.3%. In the left figure for
NAS-Bench-201, we can see that some architectures have
the same predicted energy consumption but different accu-
racy. This is because these architectures contain the same
convolutional operators, and our predictor gives the same
energy consumption for them. This suggests a potential im-
provement for NAS-Bench-201: users can narrow down the
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search space size to focus more on architectures that offer
the best energy and accuracy performance.
From the results, we can see significant improvements

in energy consumption with a slight increase in accuracy,
especially for NAS-Bench-201. These results demonstrate
the great potential of NAS-based model design for exploring
energy-efficient models.

5.3 Transferable Energy Predictors

Evaluation

In this section, we analyze how predictor performance scales
with dataset size, introduce strategies to automatically adjust
calibration sample sizes, and demonstrate how our predictor
adapts efficiently across heterogeneous hardware platforms
with minimal effort.

To assess the generalization capability of our energy pre-
dictors across hardware platforms, we first train a base kernel-
level predictor on the Google Pixel 7 and Android Device-3.
We then adapt this pre-trained model to a new target device,
the Pixel 8 Pro, using a small set of additional measurements.
This adaptation process is fully automated in PlatformX,
enabling scalable energy estimation across diverse edge de-
vices with minimal overhead. We evaluate prediction qual-
ity using four metrics: ACC@20, ACC@10, ACC@5, and
RMSE. ACC@𝑘 measures top-𝑘 accuracy in a ranking task:
given a list of kernel energy values sorted by predicted en-
ergy, ACC@𝑘 computes the fraction of true top-𝑘 lowest-
energy kernels correctly identified by the predictor. A higher
ACC@𝑘 indicates better ranking fidelity for energy-aware
selection. Root Mean Squared Error (RMSE) quantifies the
absolute prediction error in millijoules (mJ), reflecting how
closely the predicted energy values align with measured
ground truth. A lower RMSE indicates more precise regres-
sion performance.
Training Base Predictors. We first use a VAE-based

generative model to synthesize 1,000 kernel configurations
for the conv+bn+relu operator. These configurations are
exported as TensorFlow Lite models and deployed to the
source devices. Kernel-level energy is measured as described
in Section 3.4. Separate MLP predictors are then trained
for CPU and GPU backends using these measurements. On
the source device, the base predictors exhibit strong perfor-
mance. For the CPU, the predictor achieves 86.7% ACC@20,
47.0% ACC@10, 16.5% ACC@5, and an RMSE of 221.1mJ. For
the GPU, it reaches 87.9% ACC@20, 60.2% ACC@10, 32.5%
ACC@5, and an RMSE of 142.3mJ. These results confirm that
the trained base predictors effectively capture both ranking
fidelity and absolute energy values on their native devices.
Cross-Device Adaptation. To evaluate transferability,

we adapt the predictors to a Pixel 8 Pro using only 30–200
newly measured samples. PlatformX automatically selects

representative calibration points and executes them on the
target device to collect energymeasurements. The adaptation
completes within four to eight minutes, depending on sam-
ple size, and eliminates the need for full retraining. Table 4
summarizes the results. On the CPU backend, direct transfer
initially yields reduced accuracy (79.8% ACC@20, 274.2mJ
RMSEwith 30 samples), but performance improves rapidly as
more samples are used.With 100 samples, ACC@20 increases
to 84.4%, and RMSE decreases to 265.2mJ. With 200 samples,
the predictor achieves 84.0% ACC@20 and 256.1mJ RMSE. A
similar trend appears on the GPU backend: with 30 samples,
performance starts at 68.4% ACC@20 and 193.4mJ RMSE,
improving to 73.8% ACC@20 and 148.3mJ RMSE with 100
samples, and further to 75.5% ACC@20 and 141.7mJ RMSE
with 200 samples—comparable to the basemodel trainedwith
1,000 samples. These results confirm that PlatformX’s pre-
dictors are highly transferable and sample-efficient, achiev-
ing accurate cross-device energy estimation with minimal
data. This dramatically reduces calibration costs and enables
scalable hardware-aware NAS across diverse platforms.
Observations and Insights. More samples do not guar-

antee higher ranking accuracy. On the CPU path, ACC@20
slightly drops from 84.4% to 84.0%when the calibration set in-
creases from 100 to 200 samples, even though RMSE improves
marginally. We attribute this to local overfitting: additional
samples refine the regression surface but subtly reshuffle
the ordering of low-energy kernels, reducing top-𝑘 recall.
This suggests that once systematic bias is minimized, blindly
increasing calibration data can degrade ranking fidelity. A
future predictor could therefore employ a stopping crite-
rion or adaptive sampling policy that halts data collection
when marginal gains plateau, improving both efficiency and
robustness. Early diversity matters more than sample count.
The GPU predictor benefits more from the first 20 additional
samples (30 → 50) than from the next 150 (50 → 200) in
both ACC@20 and RMSE. The early samples, selected for
operator diversity, contribute richer information, while later
randomly drawn samples are often redundant. This finding
motivates a diversity-aware calibration strategy that priori-
tizes informative and structurally distinct kernels over raw
sample quantity, enabling faster convergencewith fewer data
points. Calibration cost differs by backend. The CPU model
requires roughly twice as many samples as the GPUmodel to
achieve comparable ACC@20, yet the total adaptation time
differs by only about four minutes. Because CPU kernels
execute more slowly, each additional sample incurs higher
time and energy costs but yields diminishing accuracy im-
provements. This backend asymmetry highlights the need
for a resource-aware calibration scheduler that dynamically
allocates measurement effort based on backend efficiency, en-
ergy cost, and marginal performance gain. Such an adaptive
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Figure 4: Comparison of model energy distributions evaluated on a mobile CPU before and after search-space

extension. (a) NAS-Bench-201. (b) NDS-DARTS. (c) NDS-ENAS.
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Figure 5: Comparison of model energy distributions evaluated on a mobile GPU before and after search-space

extension. (a) NAS-Bench-201. (b) NDS-DARTS. (c) NDS-ENAS.
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Figure 6: Energy consumption vs. NASWOT score on amobile CPU. Optimizedmodels achieve comparable NASWOT

scores with much lower energy. (a) NAS-Bench-201. (b) NDS-DARTS. (c) NDS-ENAS.
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Figure 7: Energy consumption vs. NASWOT score on amobile GPU. Optimizedmodels achieve comparable NASWOT

scores with much lower energy. (a) NAS-Bench-201. (b) NDS-DARTS. (c) NDS-ENAS.
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Table 4: Accuracy of conv+bn+relu kernel energy prediction when a model trained on Pixel 7 is adapted to Pixel 8

Pro with 30-200 calibration samples.

Backend Source Device Samples ACC@20 ACC@10 ACC@5 RMSE (mJ) Time (min)

CPU

Pixel 7 (base) 1000 86.7 % 47.0 % 16.5 % 221.1 40
Pixel 8 Pro (adapt) 30 79.8 % 45.4 % 23.6 % 274.2 1.2
Pixel 8 Pro (adapt) 50 83.0 % 48.2 % 22.5 % 261.1 2.0
Pixel 8 Pro (adapt) 100 84.4 % 45.4 % 22.1 % 265.2 4.0
Pixel 8 Pro (adapt) 200 84.0 % 46.6 % 23.6 % 256.1 8.0

GPU

Pixel 7 (base) 1000 87.9 % 60.2 % 32.5 % 142.3 40
Pixel 8 Pro (adapt) 30 68.4 % 38.5 % 18.2 % 193.4 1.2
Pixel 8 Pro (adapt) 50 73.3 % 39.3 % 19.8 % 150.6 2.0
Pixel 8 Pro (adapt) 100 73.8 % 38.9 % 21.0 % 148.3 4.0
Pixel 8 Pro (adapt) 200 75.5 % 41.8 % 20.5 % 141.7 8.0

scheme would maximize hardware utilization while mini-
mizing unnecessary profiling overhead.

Comparison with Prior Predictors. To assess the effec-
tiveness of our transferable predictor, we compare it against
two baselines: (i) a pre-trained energy predictor from [6]
trained solely on Android Device 3, and (ii) an adaptation
of LitePred, modified to regress energy rather than latency.
Fig. 8 illustrates the energy prediction error distributions.
On the CPU, our adapted predictor achieves 84.4% ACC@20,
45.4% ACC@10, and 22.1% ACC@5, substantially outper-
forming LitePred (32.1%, 16.1%, 8.2%). On the GPU, the gains
are consistent, with our model achieving 73.8%, 38.9%, and
21.0%, compared to LitePred’s 38.1%, 28.1%, and 19.4%. The
device-specific baseline predictor performs poorly on the
Pixel 8 Pro, with ranking accuracy near zero, which under-
scores the need for cross-device adaptation. LitePred fares
somewhat better, yet its latency-focused design does not
transfer well to energy prediction. These results highlight
the practical advantages of our kernel-level predictor with
thin, device-specific fine-tuning: it enables fast, accurate en-
ergy estimation across hardware platforms, ideal for scalable,
energy-constrained hardware-aware NAS workflows.

5.4 Pareto-based Model Search Evaluation

We evaluate the model search process on a real mobile device
with, and the model search is targeting on the CPU backend.
The evaluation covers two part, Pareto-basedmodel sampling
and optimal model selection.

Pareto-based Model Sampling.We evaluate our Pareto-
based sampling approach on Android Device-3. The evalu-
ation begin with an initial selection of𝑚 = 100 models to
construct the Pareto front. In each iteration, 𝑘 = 10 newmod-
els are selected for on-device evaluation. The model search
weights are configured as𝑤𝑠𝑎 = 1 (accuracy) and𝑤𝑠𝑒 = 3 (en-
ergy), encouraging the search to prioritize energy-efficient

models. Fig. 9 illustrates the search evolution across 7 iter-
ations. Gray points represent the initial models, plotted by
energy consumption per 10 million inferences (x-axis) and
accuracy (y-axis). The initial Pareto front is shown in blue,
and the best model is marked by a red star. After the first
iteration, the best model achieves an accuracy of 0.86 and
energy consumption of 0.2 mJ. As shown in Fig. 9b, 10 new
models are evaluated, and the updated Pareto front (yellow
line) incorporates real measurements. Although no better
model is found in the first iteration, subsequent iterations
refine the Pareto front. By the fifth iteration, the best model
achieves 0.88 accuracy with only 0.2 mJ energy consump-
tion. The search direction can be adjusted dynamically by
tuning𝑤𝑠𝑖 , allowing the system to favor accuracy or energy
efficiency based on user-defined priorities.
Optimal Model Selection. To assess model selection

strategies, we compare Gradient Descent (GD)-based selec-
tion (Algorithm 2) with the traditional Weighted Sum (WS)
strategy, using the same pool of measured models. Three
scenarios are considered, as shown in Table 5:

• Balanced: 𝑤𝑑𝑎 = 𝑤𝑑𝑐 = 1
• Accuracy-prioritized: 𝑤𝑑𝑎 = 100,𝑤𝑑𝑐 = 1
• Energy-prioritized: 𝑤𝑑𝑎 = 1,𝑤𝑑𝑐 = 100

Under balanced weights, GD identifies a model with 0.88
accuracy and only 0.2 mJ energy consumption within five
iterations. When prioritizing accuracy, GD selects a high-
performing model with 0.94 accuracy but a much higher
energy cost of 13.83 mJ. Conversely, energy-prioritized GD
yields a highly efficient model with 0.81 accuracy and just
0.16 mJ per inference. TheWS strategy is less effective across
all scenarios. With balanced weights, it selects a model with
0.93 accuracy but significantly higher energy usage (10.68mJ).
In both the accuracy- and energy-prioritized settings, it con-
sistently chooses the same model with 0.88 accuracy and
0.21 mJ energy cost. The best model achieved a validation
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Figure 8: Energy-prediction accuracy on a Pixel 8 Pro for conv+bn+relu kernels. Results compare our transferable

predictor with a device-specific baseline and a modified LitePred, evaluated on both CPU and GPU backends.

accuracy of 0.93, with a search overhead of 0.034 kWh per
model. In contrast, NASNet-A requires 450 Nvidia K40 GPUs
running continuously for seven days to train 20,000 models,
with the best model achieving a slightly lower accuracy of
0.92. However, its search process has a significantly higher
search overhead of 0.603 kWh per model.

Overall, GD-based selection consistently identifies better
trade-offs. For each configuration, it finds models closer to
the desired optimization goal, outperforming WS in both ac-
curacy and sustainability. Notably, both GD and WS-derived
models surpass MobileNet-V2 in accuracy and energy con-
sumption when evaluated on the same edge device.

6 Related Work

The growing demand for sustainable AI has intensified ef-
forts to design energy-efficient models, particularly for de-
ployment on resource-constrained edge devices. Prior re-
search has addressed this challenge from two complementary
directions: HW-NAS and fine-grained energy profiling.
Hardware-Aware Neural Architecture Search. NAS

has become a powerful paradigm for automating DNN de-
sign. Recent work extends NAS to optimize for hardware-
specific objectives such as latency, energy, or carbon emis-
sions [43, 44]. KNAS introduces a training-free strategy based
on architectural gradients, enabling efficient model evalu-
ation without full training. CE-NAS [45] employs a rein-
forcement learning agent to dynamically adapt GPU usage
based on carbon intensity forecasts, balancing sustainabil-
ity and performance. While these methods incorporate en-
vironmental objectives into NAS, they generally rely on
simulation-based estimates or coarse-grained profiling. In
contrast, PlatformX couples real-device energy profiling
with gradient-based Pareto optimization, enabling accurate
and energy-aware model selection for practical deployment
across heterogeneous edge hardware.

Energy Profiling for On-Device Model Execution.

Accurate energy measurement is critical for evaluating AI
model sustainability on edge devices. Tools such as pyJoules
[46] and PowerAPI [47] provide real-time energy profiling
but remain limited in accuracy, extensibility, or framework
compatibility. Many existing profilers are tightly integrated
with specific software stacks or restricted to certain model
layers, which constrains scalability and cross-platform ap-
plicability. PlatformX addresses these limitations through
a modular and extensible profiling pipeline that supports
both kernel-level and model-level measurement across di-
verse operators and hardware. Furthermore, it incorporates
transferable predictors trained from real measurements and
leverages zero-cost proxies for accuracy estimation, enabling
rapid, scalable, and energy-aware evaluation without full
model retraining.

7 Discussion and Future Work

PlatformX demonstrates that energy-conscious HW-NAS
can evolve from a manual, platform-specific process into a
fully automated, scalable workflow. Nevertheless, several
important research directions remain open for further explo-
ration.

Expanding BeyondConvolutional Search Spaces. The
current design of PlatformX focuses on convolutional oper-
ators and cell-based CNN architectures with energy-relevant
design parameters. However, emerging edge workloads in-
creasingly rely on transformer-based models for both vision
[48, 49] and language [50, 51] applications. Extending the
search space to include attention layers, token mixers, and
lightweight transformer modules would enable PlatformX
to optimize a broader spectrum of architectures under realis-
tic energy and latency constraints, bridging the gap between
CNN-centric and transformer-based model design.
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Figure 9: Pareto front update and best model selection across multiple search iterations.

Table 5: Comparison of NAS search results on the CIFAR-10 dataset and the associated energy consumption of the

NAS process.

Method Model Sampling Model Selection Iterations Validation Acc. ↑
(CIFAR-10)

Inf. Energy ↓
(mJ / inf.)

Search Overhead ↓
(kWh / model)

Gradient Descent (GD) Energy-prioritized
Balanced 5 0.88 0.21

0.034

Accuracy-prioritized 6 0.94 13.83
Energy-prioritized 6 0.81 0.16

Weighted Sum (WS) Energy-prioritized
Balanced 5 0.93 10.68
Accuracy-prioritized 6 0.88 0.21

Energy-prioritized 6 0.88 0.21

MobileNet-V2 – – – 0.88 7.53 –

Operator Placement and Hardware Heterogeneity.

Modern mobile SoCs integrate heterogeneous compute
units—big.LITTLE CPUs, GPUs, NPUs, and DSPs—each ex-
hibiting distinct power–performance trade-offs. The current
prototype focuses on per-kernel energy prediction within
individual backends. Future extensions could incorporate
backend-aware scheduling and operator placement strate-
gies to more accurately model co-execution and workload
migration. Integrating real-time energy feedback into com-
piler frameworks such as TVM [52] could enable joint opti-
mization of model structure [53] and deployment strategy,
advancing toward cross-backend, energy-adaptive execution.

Cross-Device and Scalable Transfer Learning. Future
work may explore meta-learning or continual learning strate-
gies to further minimize calibration overhead and enhance
generalization to unseen devices and dynamic usage con-
texts. Lightweight federated transfer approaches could allow
models trained on different devices to collaboratively update
shared predictors without exchanging raw energy traces, pre-
serving privacy while improving robustness and scalability
across heterogeneous hardware ecosystems.

8 Conclusion

We present PlatformX, the first fully automated framework
that enables practical, energy-aware NAS on real edge de-
vices. PlatformX enhances traditional NAS pipelines by

enriching the search space with energy-critical configura-
tions, leveraging transferable kernel-level predictors, guiding
exploration through gradient-based Pareto optimization, and
incorporating high-resolution, hands-free power measure-
ment. PlatformX reduces per-device calibration time from
days tominutes and achieves accurate energy predictionwith
around 100 adaptation samples when targeting new hard-
ware. It efficiently ranks tens of thousands of architectures
and consistently identifies models with superior trade-offs.
PlatformX discovers models with up to 0.94 accuracy or as
low as 0.16mJ per inference, both surpassing MobileNet-V2
in performance and energy efficiency on the same device.
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