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Abstract— Highly-dynamic (HD) map is an indispensable
building block in the future of autonomous driving, allowing
for fine-grained environmental awareness, precise localization,
and route planning. However, since HD maps include rich,
multidimensional information, the volume of HD map data is
substantial and cannot be transmitted frequently by several
vehicles over vehicular networks in real-time. Therefore, in this
paper, we propose a data source selection scheme for effective HD
map transmissions in vehicular named data networking (NDN)
scenarios. To achieve our goal, we created a vehicular NDN envi-
ronment for data collection, processing, and transmission using
the CARLA simulator and robot operating system 2 (ROS2).
Next, due to our vehicular NDN’s dynamic and complex nature,
we formulate the data source selection problem as a Markov
decision process (MDP) and solve it using a reinforcement learn-
ing approach. For simplicity, we termed our proposed scheme
data source optimization with reinforcement learning (DSORL),
which selects suitable vehicles for HD map data transmission to
MEC servers. The experiment results indicate that our suggested
method outperformed existing baseline schemes, such as RLSS,
Pro-RTT, and HDM-RTT, across all performance criteria in the
evaluation. For instance, the system throughput increases by
65% − 72.68% compared to other baseline systems. Similarly,
the proposed approach can minimize packet loss rate, data size,
and transmission time by up to 60.6%, 77.5%, and 54.1%,
respectively.

Index Terms— Highly-dynamic (HD) map, map data trans-
mission, named data networking, reinforcement learning, and
vehicular networks.

Manuscript received 11 October 2022; revised 15 February 2023 and 12 May
2023; accepted 17 May 2023. Date of publication 1 August 2023; date
of current version 4 October 2023. This work was supported in part by
the Funds from Toyota Motor North America, Amazon; and in part by
the U.S. National Science Foundation (NSF) under Grant 1910667, Grant
1910891, Grant 2025284, Grant CNS-2107216, Grant CNS-2128368, and
Grant CMMI-2222810. The Associate Editor for this article was G. Mao.
(Corresponding author: Daniel Mawunyo Doe.)

Daniel Mawunyo Doe is with the Department of Electrical and Computer
Engineering, University of Houston, Houston, TX 77004 USA (e-mail:
dmdoe@uh.edu).

Dawei Chen and Kyungtae Han are with the InfoTech Laborato-
ries, Toyota Motor North America Research and Development, Mountain
View, CA 94043 USA (e-mail: dawei.chen1@toyota.com; kyungtae.han@
toyota.com).

Haoxin Wang is with the Department of Computer Science, Georgia
State University, Atlanta, GA 30302 USA (e-mail: haoxinwang@gsu.edu).

Jiang Xie is with the Department of Electrical and Computer Engineering,
University of North Carolina at Charlotte, Charlotte, NC 28223 USA (e-mail:
jxie1@uncc.edu).

Zhu Han is with the Department of Electrical and Computer Engineer-
ing, University of Houston, Houston, TX 77004 USA, and also with the
Department of Computer Science and Engineering, Kyung Hee University,
Seoul 446-701, South Korea (e-mail: zhan2@uh.edu; hanzhu22@gmail.com).

Digital Object Identifier 10.1109/TITS.2023.3292033

I. INTRODUCTION

A. Background and Motivation

WITH the fast development of mobile communications,
vehicular sensing technologies, and autonomous driv-

ing, the internet of autonomous vehicles (AVs) has become a
prevalent topic [1]. Recent autonomous vehicles can deter-
mine their accurate locations and construct collision-free
routes using Highly-dynamic (HD) maps. HD maps offer
more dependable sensing capability and assistance for the
decision-making layer of autonomous driving, where latency
is critical. HD maps are conceptual maps with three layers:
1) the road model layer, 2) the lane model layer, and 3) the
localization model layer [2]. The road model is utilized for
navigation planning, while the lane model is used for route
planning based on current road and traffic circumstances.
The localization model is used to find the car on the map,
and the lane model can only help with vehicle perception if
the vehicle is properly found on the map. The HD map is
necessary for autonomous driving, but its amount of data is
enormous compared to a typical electronic map. As a result,
generating, transmitting, and storing the full HD map data
onboard in real-time with minimal latency and high reliability
is impracticable in vehicular networks.

Named data networking (NDN) is a prospective future
networking architecture in which each piece of content is con-
sidered to be an entity in the network, which can overcome the
shortcomings of the current host-based network architecture
(i.e., TCP/IP) in the existing vehicular networks [3], [4]. NDN
offers significant promise for the automotive network, such as
facilitating vehicle mobility, data sharing, data naming, and
a naming-based route forwarding approach [5], [6]. However,
several technological obstacles exist to creating an efficient HD
map update via construction and distribution strategy in the
vehicle NDN scenario. First, existing approaches choose data
sources via a communication model (vehicle-to-infrastructure
(V2I) or vehicle-to-vehicle (V2V)) [7], [8], where throughput
can be drastically decreased as the number of vehicles grows.
Second, existing approaches choose data sources based on
the round-trip time (RTT) between the data source and the
vehicle. In this circumstance, vehicle status changes in real-
time, particularly in complicated moving settings. As a result,
the RTT measure cannot ensure the optimal selection outcome
since other forms of the vehicle information (e.g., data size,
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speed, and direction) are not taken into account. Finally,
because of vehicle mobility, frequent data source handovers
will result in frequent RTT modifications, and wasteful data
transfers [9].

Vehicular wireless communication, processing, and caching
capabilities have recently advanced significantly [10], [11].
As a result, HD map update work may be divided into
multiple subtasks and processed via vehicular distributed com-
puting [12]. First, idle computer resources in automobiles are
completely exploited, which may boost resource utilization
and cloud server performance. Second, in vehicular NDN,
utilizing vehicles as data collectors and processors may mini-
mize the transfer of substantial raw environmental data while
improving overall system latency [13]. Extensive studies have
been conducted on distributed computing for vehicular net-
works [14]. For example, [14], [15] collaborated to optimize
input data movement and job allocation in wired data cen-
ters (DCs) to concurrently decrease inter-DC traffic, enhance
throughput, and minimize delays. Furthermore, in wireless
sensor networks, reducers and route selection are optimized
in tandem to lower transmission costs [16]. However, since
the input data for the HD Map update is gathered in real-
time, the data localization difficulties in [15] are not practical
when crowd-sensing is used.

Crowdsourced data has recently received a lot of attention
for HD map updates, as shown in [17] and [18]. Crowdsourced
data is road observation data acquired by low-cost crowdsourc-
ing devices, which commonly contain a low-cost camera and a
global navigation satellite system (GNSS) sensor [19]. Crowd-
sourcing devices are mounted on cars that traverse the same
routes regularly, making a vast quantity of environmental data
freely accessible. The main disadvantage of crowdsourcing
data is its considerable uncertainty, particularly in complicated
moving circumstances [5]. Furthermore, as the vehicle popula-
tion increases, the throughput of crowdsourced data drastically
decreases due to excessive updates [7]. From [20], due to the
imbalance in the dataset, [21] proposed an HD-Map-guided
rapidly-exploring random tree (HDM-RRT) by combining an
HD map and a sampling-based approach to quickly obtain
high-quality and feasible map updates in complex campus
scenarios. However, the authors failed to explore optimal
data source selection schemes in their proposed scheme.
As a result, [22] suggested a reinforcement learning-based
data source selection method (RLSS) for selecting HD map
data sources in vehicular NDN. However, the authors only
addressed data source selection for the HD map distribution
process and not the HD map construction process. Therefore,
deciding on a suitable vehicle to transmit the necessary data
for HD map construction in vehicular NDN environments is
an open and relevant problem.

B. Contributions

In this paper, we present a smart data source selection
scheme for HD map data transmission in vehicular NDN,
called data source optimization with reinforcement learn-
ing (DSORL). The scheme leverages reinforcement learning
(RL) to decide which vehicles should transmit data to the

multi-access edge computing server. We formulate the selec-
tion problem as a Markov decision process and solve it
with deep reinforcement learning (DRL), specifically, the
deep deterministic policy gradient (DDPG) algorithm. The
DSORL framework consists of four key components: state
space, action, policy, and reward to develop a selection policy.
To capture the dynamics of vehicular scenarios, we use factors
such as round-trip time, vehicle speed, driving direction,
and information entropy to represent the state of a data
source. Our reward function evaluates the performance of
the selected data source based on transmission throughput,
data size, and duration. The reward function evaluates the
transmission performance based on throughput, data size,
and duration time. To run DSORL, we simulate a vehicular
NDN environment with the CARLA simulator and robotic
operating system 2 (ROS2), then employ a crowd-sensing
paradigm to continuously collect environmental data using AV
sensors in our environment. We perform extensive simulations
to validate the performance gains achieved by the DSORL
scheme. In particular, the system throughput can increase by
65% − 72.68% compared with other baseline schemes. Also,
the proposed scheme can reduce packet loss rate, transmission
data size, and transmission time by up to 60.6%, 77.5%, and
54.1%, respectively.

The major contributions of this work are summarized as
follows.

• Our research is one of the first to investigate the use of
a reinforcement learning-based strategy to HD map data
source selection in vehicle NDN scenarios. We propose
the DSORL framework for selecting the appropriate data
source for transmission to MEC servers.

• We formulate the data source selection problem as a
Markov decision process and use a DRL-based approach
to solve it, specifically the DDPG algorithm. To optimize
the selection’s performance, we design a reward function
that takes into account various measurements of data
sources under vehicular NDN conditions.

• We perform extensive simulations to validate the perfor-
mance gains achieved by the DSORL scheme. In particu-
lar, the system throughput can increase by 65%−72.68%
compared with other baseline schemes. Also, the pro-
posed scheme can reduce packet loss rate, transmission
data size, and transmission time by up to 60.6%, 77.5%,
and 54.1%, respectively.

The following is an overview of the paper’s structure.
The system model is described in Section II. Section III
presents DRL-based smart data source selection technique.
Section IV discusses the simulation results and analysis.
Finally, Section V concludes our discussion.

II. SYSTEM MODEL

In this section, we introduce the system model, which com-
prises the system overview, network model, and utility model.
The system overview shown in Section II-A presents a gen-
eral summary of our vehicular NDN. Sections II-B and II-C
present the network and utility models, which characterize our
work’s modeling preliminaries and objectives. Table I lists the
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Fig. 1. Vehicular network architecture for our system model.

primary mathematical notations used in the system model in
this paper.

A. System Overview

We consider a hierarchical architecture comprising vehicles,
roadside units (RSUs), and MEC servers for our HD map
update model [23]. In our CARLA environment, we simu-
late multiple vehicles equipped with sensors, communication,
computing, and caching resources. Next, we set RSUs along
the road equipped with sensors such as high-definition cameras
to record environmental data. To ensure adequate computing
resources for HD map construction, each RSU has a MEC
server co-located with it. The vehicles take images of their
surroundings at the start of each update period for the HD map
construction process. Furthermore, the RSUs in each target cell
collect vehicle information such as location, speed, sensing
range, wireless transmission capability, computing capability,
and optimized image data size. Using our DRL-based data
source selection algorithm, the MEC server selects a vehicle
from the RSU’s list to engage in data transfer for HD map
construction in each target cell. Next, the RSU broadcasts
the MEC server’s decision to the selected vehicle for image
data transmission, and all surrounding vehicles enter an update
mode. Vehicles with limited computational capability for the
map data optimization stage rely heavily on the computation
of the surrounding vehicles and only have an update mode tog-
gled on at any target cell. Fig. 2 shows the vehicular network
architecture with our proposed DSORL scheme. Additionally,
we rely on the RSU to perform the image data collection if
no high computational capacity vehicles are available. Also,
vehicles leaving the target cell should transmit intermediate
map data to the current RSUs via wireless links, which forward
the map data to other RSUs via wired fronthaul connections
for easy access.

B. Network Model

We consider a population of V vehicles, U RSUs, and M
MEC servers, such that V = {1, 2, . . . , V }, U = {1, 2, . . . , U },
M = {1, 2, . . . , M} denote a set of vehicles, RSUs, and MEC
servers, respectively. Let N represent the total number of target

TABLE I
LIST OF MAJOR SYMBOLS AND THEIR DEFINITIONS

cells C for our environment, such that N = {1, 2, . . . , N }.
We characterize any given target cell n, n ∈ N with a
sensing range Sn that is smaller than the overall cell range
S̄. We assume that the traffic density for n is σn (in vehi-
cles/meter) [24] and the quantity of raw environmental data
(in bits) is Q, as such, there will be σn S̄ vehicles in n with
Qn environmental data at given time t . Let vn, v ∈ V and
un, u ∈ U represent vehicle v and RSU u belonging to target
cell n, such that vn comprises a constant velocity av during one
update period T , a sensing range Sv , and a computing power
Fv (CPU cycles/bits). We distinguish un by its sensing range
Su and computing power Fu . The MEC server m ∈ M has
computing power Fm for the HD map construction process.
Furthermore, we compute the driving direction of vn with
respect to the x-axis and with n starting from zero. We use
Lvn to represent the initial x-axis coordinate of vn and Lu

vn
is

the x-coordinate of RSU u to which vn belongs.
In our environment, we examine each vehicle’s perceivable

region to determine its location data. For example, vn has a
perceivable area of [max{0, Lvn − Sn}, Sn + Lvn ] in n. For
one update period, the real localization information of each
vehicle in n with cached data is [0, Sn + Lvn ], and the data
of all other vehicles in C is [0, S̄]. Suppose that the target
cell can be subdivided into K sub-regions of equal length
S̄/K and containing the same quantity of environmental data
as Q/K . We propose a set of binary sensing variables Ŝ to
indicate whether vehicles or RSUs can detect kth sub-regions
in real time or store the kth environmental data. Ŝ = 1 suppose
vn can detect kth region in real time or has kth stored the
environmental data, otherwise Ŝ = 0. As a result, we can
express the sensing variable Ŝk for the kth sub-region as

Ŝk =

{
1, Sn + Lvn ≥ k · S̄/K ,

0, otherwise.
(1)

Following that, we provide a set of binary optimization
variables X = {xv,k, xu,k}, where xv,k and xv,k determine the
vehicles and RSUs nearest to sub-region k for data collection.
When the vn is within k, xv,k = 1, otherwise xv,k = 0. Also,

Authorized licensed use limited to: Georgia State University. Downloaded on October 23,2023 at 02:24:16 UTC from IEEE Xplore.  Restrictions apply. 



11228 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 10, OCTOBER 2023

we define the term v̄n =
∑V

v=0(xv,k · Ŝv,k), which comprises
the constraint v̄n ≥ 1, indicating that the kth sub-region
contains at least one vehicle capable of data collection and Ŝv,k
is the sensing variable for the kth sub-region to which vehicle
v belongs. Likewise, when there are no vehicles capable of
data collection (v̄n = 0) in k, the RSU collect and process the
environmental data Qu,k . The environmental data Qk gathered
in k is expressed as

Qk =


Qv,k = xv,k · Ŝv,k ·

Q
K

, if v̄n ≥ 1,

Qu,k = xu,k · Ŝu,k ·
Q
K

, if v̄n = 0,

(2)

where Qv,k and Qu,k denote the data from on vn and un ,
respectively. Ŝv,k and Ŝu,k represent the sensing variable for
vehicle v and RSU u. The time taken by vehicles and RSUs
to process map data (e.g., run object detection algorithm on
the image data [25]) is defined as

tk =


tv,k =

Qv,k · FQv,k

Fv

, if v̄n ≥ 1,

tu,k =
Qu,k · FQu,k

Fu
, if v̄n = 0,

(3)

where FQv,k and FQu,k denote the required computing intensity
of Qv,k and Qu,k , respectively.

Due to vehicle mobility, the new coordinate L̂vn of vn after
data collection is provided as

L̂vn = Lvn + av · tQv,k , (4)

where tQv,k represents the time taken to collect image data by
vn in k. If vn leaves the target cell, we send its intermediate
results to the closest RSU. Consequently, the corresponding
transmission data 5Qv,k doubles for every increase in the
number of relay hops. Also, the data 5Qv,k stays unmodified
at the RSU and is transmitted to the MEC server for HD map
construction. However, if the RSU collects the data, we denote
its transmission data as 5Qu,k . The corresponding transmission
data 5Qk can be expressed as

5Qk =


5Qv,k = Qv,k ·

(
|
L̂vn

Ŝ
| + 1

)
, if v̄n ≥ 1,

5Qu,k = Qu,k ·

(
|
L̂un

Ŝ
| + 1

)
, if v̄n = 0,

(5)

where |
L̂vn

Ŝ
| represents the number of relay hops.

For the purpose of simplicity, the relocated distance dvn

of vn is ignored throughout the wireless transmission of
intermediate results. However, dvn can be expressed as

dvn =

√
|L̂un

vn − L̂vn |2 + (Dv,u + Hun )2, (6)

where L̂un
vn = |L̂vn /Ŝ| · Ŝ + Ŝ/2 denotes the current coordinate

of vn in RSU un , Dv,u represents the horizontal distance
between vn and RSU un , and Hun is the height of RSU un .

Moreover, we express the wireless transmission rate of vn
to RSU un as

Run
vn

= bvn · log
(

1 +
Pvn · |hvn |

2
· (dvn )−ϱvn

Nvn

)
, (7)

where bvn , Pvn , hvn , ϱvn , and Nvn represent vn’s allocated
bandwidth, transmission power, complex channel fading coef-
ficient, path-loss exponent, and noise power, respectively.
Subsequently, we can compute the total transmission time tvn

of vn as

tun
vn

= Qv,k · (
1

Run
vn

+
|L̂vn /Ŝ|

Run

), (8)

where Run is the wired fronthaul link between RSUs for inter-
mediate results sharing. Likewise, the wireless transmission
rate of the RSU un to MEC server m can be expressed as

Rm
un

= bun · log
(

1 +
Pun · |hun |

2
· (dun )−ϱun

Nun

)
, (9)

where bun , Pun , hun , ϱun , and Nun represent un’s allocated
bandwidth, transmission power, complex channel fading coef-
ficient, path-loss exponent, and noise power, respectively. The
total transmission time tun of RSU un as

tm
un

= Qu,k · (
1

Ru
vn

+
|L̂vn /Ŝ|

Run

). (10)

Additionally, in one update period T , the round trip time (RTT)
tRT T taken by either vn or un can be expressed as

tRT T =

{
tQv,k + tv,k + tun

vn
+ tm

un
, if v̄n ≥ 1,

tQu,k + tu,k + tm
un

, if v̄n = 0,
(11)

where tQv,k and tQu,k denote the time taken to collect data on
vn and un , respectively.

Finally, to determine which car to use for any data trans-
mission, we introduce our vehicle selection function W that
depends on the round trip time tRT T , vehicle’s distance dvn

from the RSU, velocity av , information entropy H(Qv,k), and
transmission data 5Qv,k .1 We express W as

W
(
tRT T , dvn , av, H(Qv,k), 5Qv,k

)
=

λ1tRT T + λ2dvn + λ3av + λ4 H(Qv,k) + λ55Qv,k , (12)

where H(Qv,k) = E[− log P(Qv,k)] is the information
entropy (e.g., amount of detected objects) of any transmission
data, λ1, λ2, λ3, λ4, and λ5 are scoring values in [0, 1] to
determine the importance of each parameter. For example,
we set a higher value to dvn for vehicle vn closer to RSU
un , and vice versa. However, it is challenging to determine
these scoring values in real-time. As a result, we introduce
our smart data source selection process in Section III.

C. Utility Model

Due to bandwidth limitations, it is necessary to explore
methods for reducing transmission data volume and the num-
ber of transmissions between vehicles and RSUs. Therefore,
the goal of this research is to minimize the total amount of
transmission data and data transmissions under the HD Map

1We provide detailed description of each parameters in Section III-A.
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update period T constraints, which can be provided by

min
xv,k ,xu,k ,Qk

W
(
tRT T , dvn , av, H(Qv,k), 5Qv,k

)
(13a)

s.t. tRT T ≤ T, (13b)
V∑

v=0

(xv,k · Ŝv,k) ≥ 1, (13c)

FQv,k ≤ Fv, FQu,k ≤ Fu, (13d)
H(Qv,k) ≥ 1, (13e)
dvn ≤ dun , (13f)
5Qv,k ≤ Run

vn
, 5Qu,k ≤ Rm

un
, (13g)

where the objective function seeks to minimize the total
amount of data transmissions concerning map data size and
data source selection subjected to the constraints2 of the HD
map update period T . Constraint (13b) stipulates that the entire
HD map period T shall not be exceeded by the round-trip
time tRT T . Next, a sub-region k will always have at least one
entity that is able to collecting and processing HD map data
according to constraint (13c). The third constraint in (13d)
ensures that the amount of resources needed for data collection
and processing does not exceed the capabilities of the vehicle
or RSU. Constraint (13e) requires at least one detected object
in the image data. Finally, constraints (13f) and (13g) require
that the separation distance between the vehicle and the
RSUs is not greater than that of the RSUs and that the data
transmission rate from the vehicle and RSUs not be greater
than the assigned transmission rate, respectively.

III. DEEP REINFORCEMENT LEARNING-BASED DATA
SOURCE SELECTION ALGORITHM

The HD map data source selection scheme’s main objective
is to minimize the latency of HD map updates over the
entire time-slotted system, which may be expressed as (13).
The original optimization problem is extremely complicated
due to the various entities involved (e.g., RSUs, vehicles,
and MEC servers) and the volume of data in the long-term
optimization objective [26]. As a result, using typical optimiza-
tion approaches to tackle the problem directly is challenging.
Therefore, we formulate the HD map data source selection
as a Markov decision process (MDP) and provide a solution
using appropriate reinforcement learning methods.

A. Markov Decision Process Formulation

We model the HD map data source selection issue as
a MDP with states, actions, and rewards. MDPs simulate
decision-making in discrete, stochastic, and sequential envi-
ronments. The model focuses on an agent (e.g., a decision
maker) living in an environment that changes state at ran-
dom in response to the agent’s action choices. The agent’s
immediate reward is affected by the state of the environment,
as are the probabilities of future state changes. The agent’s
goal is to choose activities that maximize a long-term measure
of total reward. Our MDP formulation can be perceived as a

2It is important to note that we need to normalize these constraints just in
case the value difference is too large, as shown in [22].

stochastic process comprising {st , at , p(st+1|st , at ), rt , st+1},
where at a time t , st , ∀ st ∈ St represents the state space,
at , ∀ at ∈ At is the action space, rt is the reward, st+1
is the next state, and p(st+1|st , at ) represents the transition
probability, respectively [27]. The return Rt is defined as the
total of discount rewards from the present state to the end
state, which can be expressed as Rt =

∑
t γt r(st , at ), where

γ ∈ (0, 1) denotes the discount factor. Based on the following
definitions, we proceed to model the HD map data source
selection problem using RL.

The MDP state constantly changes at any given time interval
due to the various entities (e.g., vehicles, RSUs, MEC servers),
entities’ characteristics (e.g., mobility), and data transmissions.
Therefore, we employ an RL approach to solve the MDP
problem with high precision to capture such high dynamics.
To decrease the complexity of our work, we examine only
vehicle data selection and assume the RSU and MEC server
locations stay constant. The RL approach consists of the
following components.

State (st ): At each decision time t , the environment’s state
st comprises the set st =

{
t, 5Q, A(t), D(t), H

}
defined in a

particular target cell. The various state entities are explained
as follows.

• t =
{
t1
RT T , . . . , tv

RT T , t V
RT T

}
represents the total time

required by vehicles to collect and transmit data to the
MEC server. The lower the tRT T , the better the network’s
performance, which improves system latency. The agent
uses this parameter to find a suitable candidate for data
transmission.

• 5Q =
{
5Q1,k , . . . , 5Qv,k , 5QV,k

}
is the transmission

data from the vehicles. The agent observes the data sizes
and decides the most cost-efficient vehicle suitable for
data transmission.

• A(t) =
{
a1n , . . . , av, aV

}
when the data source is a

vehicle, A(t) is the set of driving speeds of the data
sources at time t . For a vehicle vn , av > 0 shows the same
traveling direction between the requested vehicle and the
RSU. Suppose the data source is an RSU, av = 0. At time
t , av < 0 denotes the opposite traveling direction between
the requested vehicle and the RSU. A lower speed of vn
indicates that the data source is more stable than when it
is faster.

• D(t) =
{
d1n , . . . , dvn , dVn

}
comprises the distances of

vehicles from the RSU, which can be computed from (6).
For any vn , dvn > 0 indicates that the vehicle is in
front of the RSU, and vice versa. The agent compares
the distances against other vehicles to select a suitable
vehicle for the data transmission process, and the shorter
the distance, the more reliable the data source.

• H =
{

H(Q1,k), H(Q2,k), . . . , H(QV,k)
}

is the infor-
mation entropy contained in any vehicle data, which
helps the agent decide the significance of various vehicle
data. The more items recognized in an image, the more
information it has, making it extremely helpful.

Action (at ): We define our action as learning the correspond-
ing importance parameter λ of the state values in a particular
target cell, termed action parameters. Although there are just
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Fig. 2. DSORL framework with RL-based system and the Markov decision
process.

two types of data sources (RSUs and vehicles), vehicle mobil-
ity may produce dynamic changes when employed as a data
source, which signifies that the action space varies depending
on the vehicle scenario. However, evaluating vehicle coverage
and RSU in the connection duration time limits the amount
of data sources. For simplicity, we do not consider when the
vehicle leaves the particular target cell. However, we provide
each vehicle the option to determine its action space by using
previous action values stored on the RSU in a target cell or by
using its inherent actions. We begin by calculating the optimal
values for each state s∗

t =

{
tmin, 5min

Q , Amin, Dmin, Hmax
}

based on the preceding state definition. The rank of the chosen
data source with action at may then be determined as follows:

Gvn ,t =

λ1
tv
RT T

tmin
RT T

+ λ2
dvn

dmin
vn

+ λ3
av

amin
v

+ λ4
H(Qv,k)

Hmax (Qv,k)
+ λ5

5Qv,k

5min
Qv,k

,

(14)

where Max{Gvn ,t } denotes that the highest rank of data
source vn is chosen when the learned action parameters
{λ1, λ2, λ3, λ4, λ5} are applied to the state st values. For
example, consider the round-trip time tRT T of vehicles in (14),
our RL agent seeks to select the vehicle with the shortest tRT T .
As a result, we designed its action to penalize any vehicle with
a high tRT T by choosing a smaller action parameter while
boosting others with a higher action parameter to enhance the
chances of getting selected. Furthermore, we mention that the
motivation for considering the highest rank of the data source
using Max{Gvn ,t } is to encourage the selection of vehicles
closer to the optimal value s∗

t . Therefore, by punishing other

vehicles with less optimal values using our action parameters,
we can ensure that the highest-ranked data source will be
the optimal or near-optimal data source. Also, by altering
the action parameters to impact the choice of data sources,
we intend to allow RL-based learning of the consequences of a
broader range of states. The value ranges of action parameters
in this work are {λ1, λ2, λ3, λ4, λ5} = {0, 0.2, 0.6, 0.8, 1}

and {0, 0.25, 0.5, 0.75}. Finally, when the agent takes action
at under state st , the chosen data source is the highest
ranked Gvn ,t .

Reward (rt ): We return the corresponding reward once
each action is completed to guarantee that the RL model
can learn from previous experience, which characterizes the
overall benefit of an agent adhering to a policy. To comprehend
our agent’s reward, consider the following design principle:
1) increase throughput to the greatest extent practicable.
Throughput is the most essential metric of map data trans-
mission, which signifies that the vehicle can send and acquire
map data rapidly and effectively, 2) improve transmission time
via de-congestion. The goal is to prevent the added expense
of frequent vehicle requests and data source handovers, which
keeps the connection steady and increases throughput, and
3) reduce transmission delays through efficient data source
selection. HD map updates have higher requirements for
transmission latency in the autonomous driving scenario. Due
to the reduced latency, the data source may provide map data
quickly, decreasing the data package wait time. At time t , the
agent observes state st and then takes action at , following
policy π to obtain a reward rt , which can be expressed as

rt = δ1T (Run
vn

) − δ2C(5Q) − δ3�(tRT T ), (15)

where T (Run
vn ) is the average transmission throughput, which

is the quantity of data successfully transferred from vehicles to
the RSU in a given period and is commonly measured in bits
per second (bps). The average number of selected transmission
data is denoted by C(5Q), and the smaller the C(5Q), the
higher the reward. The average RTT time for all packets during
transmission is �(tRT T ). We employ the impacting factors
δ1, δ2, and δ3 to weigh these metrics, which gives a reasonable
reward rt , and the ranges of these parameters are 1 ≤ δ1 ≤ 2,
0 ≤ δ2 ≤ 2, and 0 ≤ δ3 ≤ 0.5.

B. Value Function and Policy

The RL algorithm evaluates an agent’s performance in
a given state using state-value functions (or action value
functions). We adopt the Bellman expectation equation to
characterize the value function as a discounted expected
return [27], which can be expressed as

We model an MDP to find an optimal policy π∗ that
minimizes the cumulative HD map update’s latency in a given
time-slot T . The agent’s action a accompanies probability
distribution P and parameter θ at state s to evaluate stochastic
policy function πθ at a given time step t , which can be denoted
as

V(st ) = rt (st , at ) + γ
∑

st

P(st+1|st , at )V(st+1). (16)
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Based on the Bellman’s optimal equation, we can compute
the the total maximum discounted reward V∗(st ) iteratively
as V∗(st ) = max

at
V(st ) [27] and the state-value function’s

convergence yield the optimal policy π∗ calculated as π∗
=

arg max
at

V(st ).

Usually, we require prior environment information when
employing a model-based reinforcement learning (RL)
algorithm. In this work, the reward and transition probabilities
are unknown to our environment. As a result, we implement
a model-free RL algorithm. Q-learning algorithm is a well-
known model-free RL [27]. In a discrete state space MDP, the
agent iteratively learns Q-values stored in the lookup table.
The Q-value Q(st , at ) update is shown as [28]

Qt = r(st , at ) + γ max
a

Q(st+1, a), (17)

Q(st , at ) ← Q(st , at ) + α(Qt − Q(st , at )). (18)

where α ∈ [0, 1] is the learning rate. The error between
target value Qt and predicted value Q(st , at ) is expressed as
a time-difference error (TD-error). It is important to note that
we can obtain the optimal Q-values policy upon convergence

C. Deep Reinforcement Learning Based Smart Data Source
Selection Process

Model-free reinforcement learning algorithms can be cat-
egorized into value-based and policy-based techniques based
on policy updates. By learning a value function, value-based
approaches enable agents to choose the best policy (e.g.,
Q learning). Also, because the agent has a wide variety of
action parameters to select from, the action space in our
work is continuous. A naive method is to discretize the action
space using a value-based procedure in the continuous domain,
which results in the curse of dimensionality and the loss of
critical information about the structure of the action domain.
The policy-based approaches use parameterized policies to
learn stochastic policies for high-dimensional and continuous
action space problems.

1) Policy Based Method: At state st , action at follows
the probability distribution with parameter θ , and we can
express the stochastic policy function πθ at time step t for
the parameterized policy as

π(at |st , θ) = P
{
At = a|St = s, θ t

= θ
}

. (19)

The objective function J(π) is expressed as

J(π) = Es∼ρπ ,a∼πθ [

∑
t

r(st , at )], (20)

which denotes the expected return, and ρθ represents the policy
π ’s discounted state distribution’s probability. The Policy
gradient approach [29] determines the optimal parameter π∗

using the steepest descent and performs parameter updates as
follows:

θt+1 = θt + α∇θt J(πt ). (21)

When the action is a high-dimensional vector, the stochastic
policy gradient (SPG) requires a significant amount of com-
puting to execute action sampling for the stochastic policy.

The deterministic policy gradient (DPG) [30], on the other
hand, explicitly provides deterministic behavior policies while
avoiding frequent action sampling. The DPG objective func-
tion’s gradient is specified as

∇θ J(ϑθ ) = Es∼ρϑ [∇θ ϑθ (s)∇aQϑ (s, a)|a=ϑθ (s)]. (22)

DPG-based approaches, on the other hand, generate deter-
ministic strategies without investigating the environment,
which results in an off-policy balance in state-action exploita-
tion and exploration. The behavior policy adopts a stochastic
policy to ensure sufficient action exploration. Conversely,
the target policy is deterministic, which capitalizes on the
full benefit of an efficient deterministic policy. Hence, the
DPG method’s learning structure follows the actor-critic (AC)
approach, as explained in the subsequent paragraph.

2) Actor-Critic Approach: The actor-critic approach inte-
grates the advantages of policy-based and value-based
approaches. In particular, the actor creates action given a
state via a policy function. The critic generates the action
value function and utilizes TD-error (loss function) to analyze
the action’s performance. The actor then employs the DPG
technique to update the policy parameter with the critic’s
output. Next, the critic applies the gradient descent approach
to update the action value function [31].

The function approximators given as θQ and θϑ are applied
as the action-value and policy function. The value function
update is expressed as

ϕt = rt + γ Q(st+1, ϑ(st+1|θϑ )) − Q(st , at |θ
Q), (23)

where the future θQ can be calculated using the expression

θQ
(t+1) = θQ(t) + αcϕt ∇θQQ(st , at |θ

Q). (24)

Using the DPG approach, the actor updates the policy param-
eters θϑ :

θϑ
(t+1) = θϑ (t) + αa∇θϑ ϑ(st |θ

ϑ )∇aQ(st , at |θ
Q)|a=ϑ(st ).

(25)

3) DSORL: A Deep Deterministic Policy Gradient-Based
Data Source Selection Algorithm: Deep deterministic policy
gradient (DDPG) is a DRL technique that combines the
advantages of Q-learning and policy gradient approaches [32].
DDPG is a good choice for our environment with a continuous
action space. It can efficiently solve sequence decision-making
problems due to its ability to directly output actions, con-
vergence stability, lower sensitivity to hyperparameters, and
reduced computational complexity. A typical DDPG comprises
two models: actor and critic, which form its actor-critic
technique. The actor consists of a policy network that uses
states as inputs to produce discrete or continuous actions
instead of a probability distribution over actions. The critic
forms a Q-value network that utilizes the state and action as
input to produce the Q-value for criticizing the performance
of an action with the help of TD-error (loss function). The
actor updates the policy parameter with the critic’s out-
put via a deterministic policy gradient (DPG) method [31].
DPG immediately creates a deterministic behavior policy and
skips numerous action sampling. The critic applies a gradient
descent method to update the action-value functions.
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Algorithm 1 DSORL: DDPG-based algorithm for smart
data source selection process

input: actor ϑ(st |θ
ϑ ), critic Q(st , at |θ

Q), learning rates:
αa, αc, discount parameter γ , smooth update τ ,
and buffer D;

1 Initialize θϑ , θQ, θϑ ′

← θϑ , and θQ′

← θQ;
2 void execute_DSORL(states):
3 for epoch n = 0; n ≤ N ; n + + do
4 Initialize a random process M;
5 Initialize initial state s0;
6 for period t = 0; t ≤ T ; t + + do
7 Select an action at = ϑ(st |θ

ϑ ) + Mt ;
8 Execute at , st+1, and rt ;
9 Store (st , at , rt , st+1) → D;

10 Sample a random d from D;
11 Initialize TD-error: ϑat =

rt + γ Q(st+1, ϑ(st+1|θϑ )) − Q(st , at |θ
Q);

12 Update critic:
θQ

t+1 = θQ
t + αc

1
d ϑat ∇θQQ(st , at |θ

Q;
13 Compute policy gradient:
14 J =

1
d

∑T
t ∇aQ(st , at |θ

Q)|a=ϑ(st )∇θϑ ϑ(st |θ
ϑ );

15 Update actor: θϑ
t+1 = θϑ at + αa∇θϑ J ;

16 Update target network:
17 θϑ ′

← τθϑ
+ (1 − τ)θϑ ′

18 θQ′

← τθQ
+ (1 − τ)θQ′

;
19 end
20 end
21 return
22 Function main():
23 Initialize CARLA_env;
24 Generate traffic flows

/* transmit environmental data */
25 data_sources[] = run carla_ros_bridge();
26 execute_DSORL(data_sources);
27 return

Usually, applying function approximators directly to the
actor-critic method coupled with the deep neural network is
unstable due to consecutive shared parameters [33]. How-
ever, training a DQN network with experience replay breaks
this shared similarity. Therefore, the authors in [34] intro-
duced a DDPG algorithm that combines the advantages of
the actor-critic approaches and DQN with experience replay,
which efficiently runs over the continuous action spaces.

Experience Replay: As a result of the agent and environment
interactions, the data tuples (st , at , rt , st+1) is produced and
stored in replay a buffer B. In addition, the critic and actor
randomly utilize a minibatch b sample (sb, ab, rb, sb+1) from
the buffer for the value function and policy function parameter
updates.

Target Network: In the work [35], the authors proved that
Q-learning is unstable when directly implemented with deep
neural networks due to parameter sharing between the target
network and the predicted network. As a result, we use

Fig. 3. CARLA vehicular NDN environment setup with DSORL process.

replicates of actor ϑ ′(st |θ
ϑ ′

) and critic network Q′(s, a|θQ′

)

to evaluate the target value. Additionally, soft updates to target
network weights are applied to improve the training stability.
Finally, Algorithm 1 presents the DDPG-based algorithm to
our DSORL approach.

IV. EXPERIMENT RESULTS AND ANALYSIS

In this section, we first introduce the system configuration
for our experiments in Section IV-A. Secondly, we present
the performance metrics and experiment benchmarks for the
basis of our experiment in Section IV-B. Finally, we con-
duct comprehensive experiments to evaluate the performance
improvements of the proposed mechanism and validate our
results in Section IV-C.

A. System Configuration

Fig. 3 shows our vehicular NDN environment with our
proposed data source selection scheme. In Fig. 3, we create
multiple vehicles that send data transmission requests to the
MEC server, which comprises the DSORL algorithm. Also,
Fig. 3 shows a sample DSORL code running on the MEC
server to select vehicles suitable for data transmission.

We conduct the research using the Python 3.8 environ-
ment on a Core i7 CPU machine with a 3.9GHz clock
speed and 64GB of RAM. Using the CARLA simulation
environment, we deploy the proposed DSORL algorithm for
HD map updates in vehicular settings. CARLA facilitates
the creation, training, and validation of autonomous driving
systems and provides open digital assets (urban layouts,
buildings, and vehicles), open-source protocols, and tech-
nologies. The simulation platform provides dynamic sensor
packages, ambient conditions, comprehensive control of static
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TABLE II
EXPERIMENT PARAMETER LIST

and dynamic actors, and more. We employ a multilane urban
traffic flow vehicle trajectory, including vehicles, pedestrians,
crossings, cross traffic, traffic laws, and other complexities
that differentiate urban driving from track racing. In addition,
we connected a robot operating system (ROS) with CARLA
(ROSbridge) to simulate computations on multiple vehicles
and RSUs, such as router and RSU connections, HD map
data collection, optimization, and construction. Using ROS,
vehicles in our CARLA environment can also execute com-
plicated algorithms, such as the YOLOX object detection
algorithm [25]. Multiple Nvidea Jetson AGX models with a
high processing capability are utilized on the MEC server for
HD map creation and dissemination. Also, we assume the
P2P link latency between the router, vehicles, RSU, and MEC
server to be 10 milliseconds with a bandwidth of 200 Mb/s.
Then, using ROSbridge, we transmit the vehicle data from
CARLA, including the number of vehicles, driving direction,
speed, and road network. In addition, we implement our
DRL method using the OpenAI Gym [35] tools. To boost
the efficiency of HD map transmission, we employ the IEEE
802.11ac protocol to send the map data. Table II presents the
parameter values in detail.

B. Performance Metrics and Experiment Benchmarks

In this part, we introduce the prerequisites for Section IV-C,
including baseline schemes and performance metrics. The
experiment baseline schemes and performance metrics
describe how the many associated approaches for this topic
were selected and the measurement metrics utilized to get
these findings, respectively.

1) Baseline Schemes (Benchmarks): To show the perfor-
mance of our proposed DSORL scheme, we implement the
three equivalent baseline schemes listed below:

1) RLSS Technique: This approach employs a double deep
Q-network (Double DQN) learning-based architecture
to train a neural network as an agent to decide on
data source selection to improve HD map update action
performance concerning latency, throughput, and packet
loss.

2) HDM-RTT: This technique combines an HD map and a
random tree sampling-based algorithm to quickly obtain
high-quality and feasible map trajectories in complex
campus scenarios.

3) Pro-RTT: In this system, the vehicle employs the
probability-based handover approach to choose a new
data source by monitoring the RTT, which decreases the
frequency of handovers.

2) Metrics of Performance: To evaluate the performance
of our proposed DSORL scheme, we employ the following
performance metrics:

1) Throughput: The amount of successfully received map
data divided by the transmission time is referred to as
throughput. This metric applies to the overall stages
involved in our latency optimization scheme.

2) Transmission Time: This is the time it takes from the
start of a map transmission to the finish, including data
collection, object detection, data transfer, and HD map
update.

3) Packet Loss Rate: This is derived by dividing the number
of lost packets by the total number of packets sent.

4) Handover Times: This metric displays how many times
the RSU exchanges data sources throughout the HD map
transmission procedure. Data transmission efficiency
will be reduced if data sources are switched often.

C. Implementation Discussions

In this section, we present and explain the various results
obtained in our experiment using the previously introduced
baseline schemes and performance metrics.

1) Convergence Analysis: In this experiment, we evaluate
the convergence performance of our proposed DSORL method
for smart data source selection with a greedy approach (GA),
deterministic policy gradient (DPG), and Double DQN, taking
into account normalized reward and variable learning rates,
as seen in Fig. 4. Fig. 4a depicts the performance of DSORL,
Double DQN, DPG, and GA based on normalized reward con-
vergence, and Fig. 4b shows the impact of varied learning rates
on the convergence of the DSORL algorithm. According to
Fig. 4a, all algorithms converge, with the proposed algorithm
achieving the fastest convergence at around 450 epochs and
the highest normalized reward at almost 0.95. The observed
trend can be attributed to DSORL properties that significantly
improve the learning process. For example, DSORL uses deep
neural networks, allowing it to handle high-dimensional obser-
vation spaces compared to the similar architecture in DPG.
Additionally, DSORL outperforms Double DQN due to its
policy-based algorithm, which can handle both continuous and
discrete action spaces and is less sensitive to hyperparameters.
Moreover, DSORL uses a single neural network and is less
prone to convergence issues, while Double DQN requires
two separate networks and can have difficulty converging.
Furthermore, GA chooses actions greedily, which results in
the worst convergence with a normalized reward of around
0.65. GA appears to be appropriate for nonlinear integer
programming (NLIP) problems that cannot capture the high
dynamics of the MEC system.

Authorized licensed use limited to: Georgia State University. Downloaded on October 23,2023 at 02:24:16 UTC from IEEE Xplore.  Restrictions apply. 



11234 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 10, OCTOBER 2023

Fig. 4. Convergence analysis.

We examine the convergence of the proposed DSORL
algorithm, with the fastest convergence and the largest reward
value, using several learning rates such as α = 0.1, α = 0.01,
α = 0.001, and α = 0.0001. The convergence for each
learning rate is shown in Fig. 4b, with α = 0.001 achieving the
maximum reward. We can conclude that using α = 0.001 as
the learning rate for our suggested method results in improved
convergence. However, this is not true in every circumstance
because the choice of α is dependent on the algorithm and the
environment.

2) Average Throughput Analysis: We first discuss the
impact of the DRL algorithm on data source selection, which
allows the DSORL scheme to adapt to the dynamic and
complex nature of vehicular NDN. The DRL algorithm’s
ability to learn from the system’s current state, considering
factors such as latency, throughput, and packet loss, allows it to
select suitable vehicles for HD map data transmission to MEC
servers, thereby optimizing the performance of the vehicular
NDN environment. The effectiveness of the DSORL method
is demonstrated through a comparison with various baseline
schemes (RLSS, Pro-RTT, and HDM-RTT) in terms of average
throughput performance for a varying number of vehicles,
as shown in Fig. 5a. As seen in Fig. 5a, increasing the number
of vehicles decreases the average throughput of the system.
However, the DSORL scheme significantly outperforms other
baseline systems, owing to reduced latency, packet loss, and
bandwidth utilization resulting from fewer data transmissions.
For example, when the number of vehicles is 10 − 30, the
median average throughput is around 8.2, 15.8, 20.5, and
35 (Mb/s) in the corresponding HDM-RTT, Pro-RTT, RLSS,
and DSORL schemes, respectively.

Similarly, Fig. 5b shows the average throughput with time.
As shown in Fig. 5b, the average throughput decreases with
time. DSORL achieves a higher throughput, while all baseline
schemes maintain a relatively steady state. Considering 100s
to 200s duration, DSORL obtains an average throughput of
56.5 (Mb/s), RLSS, HDM-RTT, and Pro-RTT, and 39, 30,
and 20 (Mb/s), respectively. Our detailed experimental results
demonstrate that the proposed DSORL scheme effectively
optimizes data source selection for HD map data transmission
in vehicular NDN environments. The method’s RL-based MDP
formulation and adaptive capabilities allow it to outperform
existing baseline schemes, making it a promising solution for
real-world vehicular network applications.

3) Packet Loss Analysis: In this section, we highlight the
impact of our DSORL algorithm on minimizing packet loss

Fig. 5. Throughput analysis.

in the data source selection process. The DSORL algorithm’s
ability to learn from the system’s current state, considering
factors such as network congestion and interference between
vehicles, allows it to select suitable vehicles for HD map data
transmission to MEC servers, thereby reducing the packet loss
rate.

To demonstrate the effectiveness of the DSORL method in
minimizing packet loss, we compare it with various baseline
schemes (RLSS, Pro-RTT, and HDM-RTT) in Fig. 6a. Fig. 6b
shows the average packet loss rate for each scheme, revealing
two important observations:

1) the DSORL scheme significantly outperforms other
baseline systems, and

2) when the number of vehicles exceeds 20, the packet
loss rate of RLSS, Pro-RTT, and HDM-RTT schemes
increases substantially compared to the DSORL.

For example, the average packet loss rate for DSORL, RLSS,
Pro-RTT, and HDM-RTT schemes is 4.95%, 8.95%, 12.5%,
and 15.65%, respectively. The superior packet loss rate of
DSORL can be attributed to its ability to reduce network con-
gestion, thereby improving data transfer quality and mitigating
interference between multiple vehicles in the environment. Our
proposed DSORL scheme is highly effective in optimizing
data source selection for HD map data transmission in vehic-
ular NDN environments, particularly regarding packet loss
rate. The RL-based MDP formulation and adaptive capabilities
allow the DSORL method to outperform existing baseline
schemes, making it a promising solution for real-world vehicu-
lar network applications. The superior performance of DSORL
in minimizing packet loss rate highlights its practical implica-
tions and relevance for real-life scenarios, where maintaining
a low packet loss rate is crucial for ensuring reliable commu-
nication and data transfer in vehicular networks.

4) HD Map Data Size Analysis: In this section of the
experiment, we investigate further the impact of HD map
data size on transmission time by comparing the proposed
DSORL method with various baseline techniques (RLSS, Pro-
RTT, and HDM-RTT). We present the transmission time for
each baseline system when the number of vehicles is 20, and
the data size varies, as shown in Fig. 6b. From our analysis,
we make two key observations:

1) the DSORL scheme consistently outperforms the other
baseline systems across different data sizes; and

2) as the data size increases, the transmission time for the
DSORL method grows slower than the other baseline
schemes.
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Fig. 6. Packet loss rate and transmission data size.

The DSORL method’s superior performance can be attributed
to its integrated image data optimization, which reduces the
amount of data transmitted and, consequently, the transmission
time. This approach is particularly crucial in NDN vehicular
scenarios, where data size significantly impacts transmission
time performance. For example, when the data size increases
from 50MB to 200MB, the median transmission time rises by
32, 91, 132, and 145s for the DSORL, RLSS, Pro-RTT, and
HDM-RTT schemes, respectively. Our analysis demonstrates
the practical relevance of the proposed DSORL method in
real vehicular network environments, as it can effectively
reduce transmission time while maintaining high-quality data
transfers. This process is particularly significant for ensuring
the efficiency and reliability of HD map transmissions in
autonomous driving scenarios.

5) Transmission Time and Handover Count Analysis: In the
following result discussion, we examine how well the DSORL
scheme performs compared to different baseline techniques,
focusing on transmission time and handover count of different
vehicle densities. Figs. 7 and 7b depict the handover count and
transmission time of each method in these aspects, respec-
tively. Our analysis leads to three critical observations:

1) the DSORL scheme demonstrates superior performance
compared to the other baseline schemes;

2) as the number of vehicles increases, the transmis-
sion time and handover count in RLSS, Pro-RTT, and
HDM-RTT schemes show a significant rise, whereas the
DSORL method remains relatively stable; and

3) there is a direct correlation between handover count
(number of data source switches) and transmission data
size on transmission time, which further validates the
effectiveness of our proposed DSORL scheme.

The primary reason behind DSORL’s superior performance
lies in its ability to minimize the number of handovers, thereby
increasing connection stability. Our DSORL approach achieves
this reduction, which effectively reduces network congestion
and improves data transmissions. In real-world vehicular net-
work environments, minimizing handovers is essential for
maintaining a stable connection and enabling efficient data
transmission, particularly in dense traffic scenarios.

Furthermore, to provide more context, let us consider an
example with 20 vehicles in the environment. The average
handover count for DSORL, RLSS, Pro-RTT, and HDM-RTT
systems is 4.9, 9.2, 12.7, and 16.5, respectively. The aver-
age transmission time for DSORL, RLSS, Pro-RTT, and
HDM-RTT schemes is 4.27, 8.6, 14.7, and 19.8s, respectively.

Fig. 7. Handover count and transmission time (s).

These results further emphasize the practical relevance of
the DSORL scheme and its potential to optimize HD map
transmissions in autonomous driving scenarios.

6) Communication Cost Analysis: In this section, we ana-
lyze the impact of the number of vehicles and available band-
width on the communication cost of our proposed DSORL
scheme, as illustrated in Fig. 8a. The communication cost is
a crucial factor for evaluating the effectiveness of DSORL in
real-world vehicular network scenarios. From Fig. 8a, we can
derive three significant observations:

1) the communication cost of DSORL increases with the
growth in the number of vehicles,

2) the communication cost escalates as the bandwidth
decreases, and

3) the DSORL scheme can effectively manage the com-
munication cost under various bandwidths, maintaining
acceptable performance even at lower bandwidths.

This analysis demonstrates the practical implications of
the DSORL scheme in real-world vehicular network
environments.

Bandwidth plays a critical role in the map update process,
as limited bandwidth may lead to increased communica-
tion costs, impacting the system’s overall performance. For
instance, when there are 20 vehicles, the communication cost
of DSORL is 2.4, 4.7, 46.9, and 468.8ms at 100, 10, and 1Mb
bandwidths, respectively, when considering different band-
widths. As a result, we employ the IEEE 802.11ac standard,
which offers higher data rates, instead of the IEEE 802.11p
(3 Mbit/s), to ensure that the HD map update process in
DSORL does not adversely affect the system’s performance.
These insights help demonstrate the robustness and adapt-
ability of DSORL in practical vehicular network environ-
ments, emphasizing its potential to manage communication
costs effectively and maintain satisfactory performance under
different conditions.

7) Vehicle Speed Analysis: To further investigate the effec-
tiveness of the DSORL scheme, we analyze the impact of
vehicle driving speed on transmission data size for various
baseline approaches. Fig. 8b shows the relationship between
transmission data size and vehicle speed, ranging from 10 to
60m/s for 30 vehicles. The following key observations can be
made:

1) The DSORL scheme consistently outperforms the other
baseline methods at various speeds, demonstrating its
adaptability and effectiveness in dynamic vehicular net-
work scenarios.
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Fig. 8. Communication cost and speed impact.

2) As vehicle speed increases, the transmission data size
decreases for all schemes. This observation highlights
the importance of considering vehicle speed as a fac-
tor influencing data transmission performance in NDN
vehicular environments.

3) A substantial reduction in transmission data size is
observed for all baseline methods at a speed of 30m/s.
For instance, the transmission data sizes for RLSS, Pro-
RTT, and HDM-RTT methods are 182, 138, and 120MB,
respectively. However, the DSORL scheme maintains a
consistent decrease of 207MB, showcasing its robust-
ness in managing transmission data size under varying
speeds.

4) The reduced transmission time and vehicle handovers in
the DSORL scheme allow for a more efficient and stable
data transmission process, regardless of the vehicle’s
speed. This finding emphasizes the practical relevance
of our proposed method in real-world vehicular network
environments.

By incorporating these additional insights, we can conclude
that our discussion highlights the versatility and effectiveness
of the DSORL scheme in managing the complexities of real
vehicular network scenarios.

V. CONCLUSION

In this study, we designed and implemented a smart data
source selection scheme for HD map updates in vehicular
NDN scenarios. We created a vehicular NDN environment
with the CARLA simulator and ROS2 to collect environmen-
tal data using AV sensors. Next, considering our vehicular
NDN’s dynamic and complex nature, we formulated the
data source selection problem as an MDP and solved it
using a DRL-based approach. For simplicity, we termed our
proposed scheme DSORL, which selects suitable vehicles
for HD map data transmission to MEC servers. DSORL
takes advantage of the NDN architecture to effectively han-
dle large-scale HD map delivery in vehicular scenarios and
selects suitable data sources in real-time to stay current
with dynamic and complicated environments. The experiment
results indicated that our suggested method outperformed
existing baseline schemes across all performance criteria in the
evaluation. For instance, the system throughput increases by
65% − 72.68% compared to other baseline systems. Similarly,
the proposed approach can minimize packet loss rate, data size,
and transmission time by up to 60.6%, 77.5%, and 54.1%,
respectively.
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